organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(2,3-Di­chloro­phen­yl)-3-(4-meth­­oxy­phen­yl)-1-phenyl-4,5-di­hydro-1H-pyrazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, ajaykumar@ycm.uni-mysore.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 December 2016; accepted 19 December 2016; online 6 January 2017)

In the racemic title compound, C22H18Cl2N2O, the dihedral angles between the central di­hydro­pyrazole ring (r.m.s. deviation = 0.018 Å) and the pendant meth­oxy­phenyl, phenyl and di­chloro­phenyl rings are 3.96 (9), 15.90 (9) and 66.65 (9)° respectively. Weak aromatic ππ stacking [shortest centroid–centroid separation = 3.8476 (11) Å] occurs in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In continuation of our work on pyrazoline derivatives (Assem et al., 2016[Assem, B., Naveen, S., Nagamallu, R., Ajay Kumar, K., Abdoh, M., Warad, I. & Lokanath, N. K. (2016). Z. Kristallogr, 231, 267-269.]), we report herein on the synthesis and crystal structure of the title compound. The title mol­ecule is shown in Fig. 1[link]. The pyrazole ring is nearly planar with atom C1 deviating by 0.017 (2) Å from the mean plane defined by atoms N1, N2, C2 and C3. The dihedral angle between the pyrazole ring and the meth­oxy­phenyl ring is 3.96 (9)°, indicating their near coplanarity, whereas those between the pyrazole ring and the phenyl and di­chloro­phenyl rings are 15.90 (9) and 66.65 (9)°, respectively. In the arbitrarily chosen asymmetric mol­ecule, the compound possess a chiral center at C3 with R conformation. Since the compound crystallizes in a centrosymmetric space group, we can surmise that the compound is a racemic mixture. The torsion angle value of 6.2 (3)° for C10—O1—C—C6 indicates that the meth­oxy group lies almost in the plane of the phenyl ring. No hydrogen bonds were observed in the crystal but weak aromatic ππ stacking [shortest centroid–centroid separation = 3.8476 (11) Å] is observed.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Synthesis and crystallization

To a solution of (E)-3-(2,3-di­chloro­phen­yl)-1-(4-meth­oxy­phen­yl)prop-2-en-1-one, (3 mmol) and phenyl­hydrazine hydro­chloride (3 mmol) in methyl alcohol (25 ml), 4–5 drops of conc. hydro­chloric acid were added. The mixture was refluxed on a water bath for 4 h. The progress of the reaction was monitored by TLC. After completion, the mixture was poured into ice-cold water and stirred. The solid that separated was filtered and washed with ice-cold water. The product was crystallized from methyl alcohol solution with 2–3 drops of aceto­nitrile added to get the title compound in the form of yellow blocks in 88% yield, m.p. 134–136°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C22H18Cl2N2O
Mr 397.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.8255 (5), 11.0655 (4), 13.3583 (5)
β (°) 112.972 (1)
V3) 1881.57 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.21
Crystal size (mm) 0.29 × 0.26 × 0.23
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.456, 0.525
No. of measured, independent and observed [I > 2σ(I)] reflections 19112, 3089, 2996
Rint 0.055
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.07
No. of reflections 3089
No. of parameters 246
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

5-(2,3-Dichlorophenyl)-3-(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C22H18Cl2N2OF(000) = 824
Mr = 397.28Dx = 1.403 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2996 reflections
a = 13.8255 (5) Åθ = 5.3–64.6°
b = 11.0655 (4) ŵ = 3.21 mm1
c = 13.3583 (5) ÅT = 296 K
β = 112.972 (1)°Block, yellow
V = 1881.57 (12) Å30.29 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
3089 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2996 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.055
Detector resolution: 18.4 pixels mm-1θmax = 64.6°, θmin = 5.3°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.456, Tmax = 0.525l = 1315
19112 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.6657P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3089 reflectionsΔρmax = 0.27 e Å3
246 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: shelxl, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (5)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.87473 (3)0.71246 (4)0.68752 (3)0.0315 (2)
Cl20.99910 (3)0.94868 (5)0.68003 (4)0.0380 (2)
O10.13280 (10)0.71402 (12)0.56282 (11)0.0338 (4)
N10.59658 (11)0.63158 (14)0.38384 (11)0.0255 (4)
N20.49511 (11)0.62782 (12)0.37995 (11)0.0230 (4)
C10.49661 (14)0.65881 (15)0.47377 (13)0.0220 (5)
C20.60554 (13)0.68189 (16)0.55786 (14)0.0254 (5)
C30.67436 (13)0.66381 (15)0.49192 (13)0.0225 (5)
C40.40026 (14)0.67089 (14)0.49382 (14)0.0222 (5)
C50.30163 (14)0.64888 (16)0.41333 (14)0.0259 (5)
C60.21047 (14)0.66298 (16)0.43247 (15)0.0279 (5)
C70.21773 (14)0.69931 (16)0.53491 (15)0.0264 (5)
C80.31531 (15)0.72286 (15)0.61613 (15)0.0275 (5)
C90.40538 (14)0.70892 (15)0.59615 (14)0.0241 (5)
C100.03301 (16)0.6789 (2)0.4851 (2)0.0456 (8)
C110.62138 (13)0.57251 (15)0.30494 (13)0.0225 (5)
C120.72612 (14)0.56432 (16)0.31559 (14)0.0261 (5)
C130.75027 (15)0.50561 (16)0.23657 (15)0.0298 (6)
C140.67259 (17)0.45529 (16)0.14630 (15)0.0318 (6)
C150.56912 (15)0.46328 (16)0.13576 (15)0.0290 (5)
C160.54263 (14)0.52186 (16)0.21336 (14)0.0247 (5)
C170.73547 (13)0.77685 (14)0.48744 (13)0.0206 (5)
C180.82811 (13)0.80672 (15)0.57467 (13)0.0220 (5)
C190.88385 (13)0.91101 (16)0.57130 (15)0.0256 (5)
C200.84742 (15)0.98622 (17)0.48206 (16)0.0303 (6)
C210.75577 (16)0.95706 (17)0.39570 (16)0.0322 (6)
C220.70052 (14)0.85391 (16)0.39824 (14)0.0276 (5)
H2A0.623700.624600.617400.0300*
H2B0.612100.763400.586600.0300*
H30.722900.596300.522100.0270*
H50.296500.624100.344900.0310*
H60.145200.648300.377300.0330*
H80.320100.748100.684300.0330*
H90.470400.724900.651200.0290*
H10A0.013900.730500.422500.0680*
H10B0.018500.685900.516500.0680*
H10C0.036100.596700.463800.0680*
H120.779400.598200.375600.0310*
H130.820000.500000.244500.0360*
H140.689500.416700.093400.0380*
H150.516400.428800.075600.0350*
H160.472600.527400.204500.0300*
H200.884301.055900.480100.0360*
H210.730901.007300.335100.0390*
H220.638800.835700.339200.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0323 (3)0.0271 (3)0.0258 (3)0.0009 (2)0.0012 (2)0.0050 (2)
Cl20.0264 (3)0.0396 (3)0.0438 (3)0.0121 (2)0.0092 (2)0.0092 (2)
O10.0319 (7)0.0344 (8)0.0418 (8)0.0067 (5)0.0217 (6)0.0055 (6)
N10.0209 (7)0.0304 (8)0.0248 (8)0.0046 (6)0.0084 (6)0.0078 (6)
N20.0233 (7)0.0196 (8)0.0266 (8)0.0024 (5)0.0102 (6)0.0008 (6)
C10.0264 (9)0.0153 (8)0.0244 (9)0.0016 (6)0.0100 (7)0.0012 (6)
C20.0289 (9)0.0245 (9)0.0238 (9)0.0039 (7)0.0114 (7)0.0021 (7)
C30.0227 (8)0.0208 (9)0.0216 (8)0.0020 (7)0.0059 (7)0.0015 (6)
C40.0277 (9)0.0141 (8)0.0256 (9)0.0017 (6)0.0112 (7)0.0023 (6)
C50.0303 (9)0.0229 (9)0.0252 (9)0.0025 (7)0.0117 (7)0.0011 (7)
C60.0259 (9)0.0238 (9)0.0332 (10)0.0023 (7)0.0108 (7)0.0014 (7)
C70.0297 (9)0.0180 (9)0.0357 (10)0.0045 (7)0.0175 (8)0.0071 (7)
C80.0375 (10)0.0211 (9)0.0272 (9)0.0037 (7)0.0162 (8)0.0027 (7)
C90.0283 (9)0.0191 (9)0.0240 (9)0.0005 (7)0.0094 (7)0.0024 (6)
C100.0312 (11)0.0472 (13)0.0647 (15)0.0029 (9)0.0257 (10)0.0080 (11)
C110.0296 (9)0.0157 (8)0.0241 (9)0.0016 (6)0.0125 (7)0.0008 (6)
C120.0287 (9)0.0208 (9)0.0285 (9)0.0032 (7)0.0109 (7)0.0015 (7)
C130.0353 (10)0.0230 (9)0.0376 (10)0.0020 (7)0.0214 (8)0.0031 (8)
C140.0483 (11)0.0225 (10)0.0316 (10)0.0017 (8)0.0231 (9)0.0003 (7)
C150.0415 (10)0.0197 (9)0.0235 (9)0.0034 (7)0.0103 (8)0.0008 (7)
C160.0287 (9)0.0188 (9)0.0255 (9)0.0014 (7)0.0093 (7)0.0011 (7)
C170.0224 (8)0.0167 (8)0.0236 (9)0.0008 (6)0.0101 (7)0.0022 (6)
C180.0230 (8)0.0188 (8)0.0245 (9)0.0018 (7)0.0095 (7)0.0003 (7)
C190.0220 (8)0.0233 (9)0.0326 (9)0.0024 (7)0.0119 (7)0.0063 (7)
C200.0363 (10)0.0192 (9)0.0410 (11)0.0041 (7)0.0211 (9)0.0012 (8)
C210.0437 (11)0.0233 (10)0.0330 (10)0.0041 (8)0.0188 (9)0.0071 (7)
C220.0296 (9)0.0248 (9)0.0254 (9)0.0034 (7)0.0074 (7)0.0012 (7)
Geometric parameters (Å, º) top
Cl1—C181.7371 (17)C17—C181.394 (2)
Cl2—C191.7366 (19)C17—C221.390 (2)
O1—C71.373 (3)C18—C191.398 (3)
O1—C101.419 (3)C19—C201.378 (3)
N1—N21.384 (2)C20—C211.378 (3)
N1—C31.468 (2)C21—C221.381 (3)
N1—C111.392 (2)C2—H2A0.9700
N2—C11.292 (2)C2—H2B0.9700
C1—C21.508 (3)C3—H30.9800
C1—C41.464 (3)C5—H50.9300
C2—C31.541 (3)C6—H60.9300
C3—C171.524 (2)C8—H80.9300
C4—C51.389 (3)C9—H90.9300
C4—C91.405 (2)C10—H10A0.9600
C5—C61.389 (3)C10—H10B0.9600
C6—C71.392 (3)C10—H10C0.9600
C7—C81.387 (3)C12—H120.9300
C8—C91.380 (3)C13—H130.9300
C11—C121.402 (3)C14—H140.9300
C11—C161.399 (2)C15—H150.9300
C12—C131.387 (3)C16—H160.9300
C13—C141.381 (3)C20—H200.9300
C14—C151.385 (3)C21—H210.9300
C15—C161.388 (3)C22—H220.9300
C7—O1—C10117.32 (16)C20—C21—C22120.63 (18)
N2—N1—C3112.76 (13)C17—C22—C21121.17 (17)
N2—N1—C11120.20 (14)C1—C2—H2A111.00
C3—N1—C11123.80 (15)C1—C2—H2B111.00
N1—N2—C1108.87 (15)C3—C2—H2A111.00
N2—C1—C2113.63 (17)C3—C2—H2B111.00
N2—C1—C4122.05 (16)H2A—C2—H2B109.00
C2—C1—C4124.32 (15)N1—C3—H3110.00
C1—C2—C3102.25 (14)C2—C3—H3110.00
N1—C3—C2102.41 (14)C17—C3—H3110.00
N1—C3—C17111.43 (13)C4—C5—H5119.00
C2—C3—C17113.04 (14)C6—C5—H5119.00
C1—C4—C5122.06 (16)C5—C6—H6120.00
C1—C4—C9120.09 (17)C7—C6—H6120.00
C5—C4—C9117.83 (18)C7—C8—H8120.00
C4—C5—C6121.66 (17)C9—C8—H8120.00
C5—C6—C7119.40 (18)C4—C9—H9120.00
O1—C7—C6124.05 (18)C8—C9—H9120.00
O1—C7—C8116.05 (17)O1—C10—H10A109.00
C6—C7—C8119.90 (19)O1—C10—H10B109.00
C7—C8—C9120.23 (17)O1—C10—H10C109.00
C4—C9—C8120.98 (18)H10A—C10—H10B109.00
N1—C11—C12120.23 (15)H10A—C10—H10C110.00
N1—C11—C16120.84 (17)H10B—C10—H10C109.00
C12—C11—C16118.92 (16)C11—C12—H12120.00
C11—C12—C13119.95 (17)C13—C12—H12120.00
C12—C13—C14121.2 (2)C12—C13—H13119.00
C13—C14—C15118.93 (19)C14—C13—H13119.00
C14—C15—C16121.16 (18)C13—C14—H14121.00
C11—C16—C15119.89 (19)C15—C14—H14121.00
C3—C17—C18120.30 (14)C14—C15—H15119.00
C3—C17—C22121.66 (16)C16—C15—H15119.00
C18—C17—C22118.03 (16)C11—C16—H16120.00
Cl1—C18—C17119.46 (13)C15—C16—H16120.00
Cl1—C18—C19120.07 (13)C19—C20—H20120.00
C17—C18—C19120.47 (15)C21—C20—H20120.00
Cl2—C19—C18120.57 (14)C20—C21—H21120.00
Cl2—C19—C20119.00 (15)C22—C21—H21120.00
C18—C19—C20120.43 (17)C17—C22—H22119.00
C19—C20—C21119.27 (18)C21—C22—H22119.00
C10—O1—C7—C66.2 (3)C5—C4—C9—C80.6 (2)
C10—O1—C7—C8173.76 (16)C4—C5—C6—C70.4 (3)
C3—N1—N2—C12.39 (19)C5—C6—C7—O1178.90 (16)
C11—N1—N2—C1162.79 (15)C5—C6—C7—C81.0 (3)
N2—N1—C3—C20.60 (17)O1—C7—C8—C9179.10 (15)
N2—N1—C3—C17121.72 (16)C6—C7—C8—C90.8 (3)
C11—N1—C3—C2160.19 (15)C7—C8—C9—C40.0 (3)
C11—N1—C3—C1778.7 (2)N1—C11—C12—C13179.84 (16)
N2—N1—C11—C12172.59 (15)C16—C11—C12—C130.7 (3)
N2—N1—C11—C168.2 (2)N1—C11—C16—C15179.93 (16)
C3—N1—C11—C1214.4 (2)C12—C11—C16—C150.9 (3)
C3—N1—C11—C16166.39 (16)C11—C12—C13—C140.5 (3)
N1—N2—C1—C23.22 (19)C12—C13—C14—C150.5 (3)
N1—N2—C1—C4176.18 (14)C13—C14—C15—C160.8 (3)
N2—C1—C2—C32.73 (19)C14—C15—C16—C110.9 (3)
C4—C1—C2—C3176.64 (15)C3—C17—C18—Cl11.2 (2)
N2—C1—C4—C50.5 (3)C3—C17—C18—C19179.37 (17)
N2—C1—C4—C9177.78 (16)C22—C17—C18—Cl1179.76 (14)
C2—C1—C4—C5179.80 (16)C22—C17—C18—C190.4 (3)
C2—C1—C4—C91.6 (2)C3—C17—C22—C21179.07 (18)
C1—C2—C3—N11.10 (16)C18—C17—C22—C210.1 (3)
C1—C2—C3—C17118.90 (15)Cl1—C18—C19—Cl20.8 (2)
N1—C3—C17—C18165.11 (16)Cl1—C18—C19—C20179.97 (15)
N1—C3—C17—C2215.9 (2)C17—C18—C19—Cl2179.82 (14)
C2—C3—C17—C1880.2 (2)C17—C18—C19—C200.6 (3)
C2—C3—C17—C2298.77 (19)Cl2—C19—C20—C21179.74 (16)
C1—C4—C5—C6178.66 (16)C18—C19—C20—C210.5 (3)
C9—C4—C5—C60.4 (3)C19—C20—C21—C220.2 (3)
C1—C4—C9—C8178.89 (15)C20—C21—C22—C170.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N20.932.502.811 (2)100
C22—H22···N10.932.462.818 (2)103
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationAssem, B., Naveen, S., Nagamallu, R., Ajay Kumar, K., Abdoh, M., Warad, I. & Lokanath, N. K. (2016). Z. Kristallogr, 231, 267–269.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds