organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[4,5-Di­phenyl-2-(pyridin-4-yl)-1H-imidazol-1-yl]ethanol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, and fKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 24 January 2017; accepted 25 January 2017; online 27 January 2017)

The basic building blocks of the three-dimensional structure of the title compound, C22H19N3O, are helical chains running along the [101] direction and formed by O—H⋯N hydrogen bonds. C—H⋯O hydrogen bonds between chains generate sheets which are then joined together by C—H⋯N hydrogen bonds. The two- and three-dimensional structures also feature two sets of C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazole derivatives have intensive synthetic inter­est due to their important biological activities, and many of these compounds are candidates for drug development (Romero et al., 2014[Romero, D. H., Heredia, V. E. T., García-Barradas, O., López, M. E. M. & Pavón, E. S. (2014). J. Chem. Biochem. 2, 45-83.]). On the other hand, the chemistry of imidazole and its pharmacological actions have attracted many chemists and biologists (Kumar, 2010[Kumar, J. R. (2010). Pharmacophore, 1, 167-177.]; Shalini et al., 2010[Shalini, K., Sharma, P. K. & Kumar, N. (2010). Der Chem. Sin. 1, 36-47.]; Bhatnagar et al., 2011[Bhatnagar, A., Sharma, P. K. & Kumar, N. A. (2011). Int. J. PharmTech Res. 3, 268-282.]). In this context we report here the synthesis and crystal structure of the title compound.

In the title mol­ecule (Fig. 1[link]), the 4-pyridyl ring makes a dihedral angle of 36.43 (9)° with the imidazole ring. The dihedral angles between the imidazole and the C9–C14 and C15–C20 rings are, respectively, 81.98 (5) and 37.94 (6)°.

[Figure 1]
Figure 1
The title mol­ecule, showing the atom-labeling scheme and 50% probability displacement ellipsoids.

In the crystal, mol­ecules form helical chains running parallel to [101] through O1—H1⋯N2i hydrogen bonds (Table 1[link]). These chains are linked into sheets parallel to (101) by C5—H5⋯O1ii hydrogen bonds and the sheets are further associated into a three-dimensional layer structure through C13—H13⋯N3iii hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]). The two- and three-dimensional structures also feature two sets of C—H⋯π(ring) inter­actions (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.94 (2) 1.85 (2) 2.7857 (16) 169.4 (19)
C5—H5⋯O1ii 0.992 (19) 2.448 (19) 3.2194 (18) 134.3 (14)
C13—H13⋯N3iii 0.99 (2) 2.52 (2) 3.327 (2) 138.0 (15)
C7—H7⋯Cg1iv 0.993 (18) 2.73 (2) 3.588 (2) 145 (1)
C18—H18⋯Cg1v 0.98 (2) 2.93 (2) 3.828 (2) 153 (1)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions, with O—H⋯N and C—H⋯N hydrogen bonds shown, respectively, as red and blue dotted lines. The C—H⋯π(ring) inter­actions are shown as orange dotted lines.
[Figure 3]
Figure 3
Packing viewed along the a axis, with inter­molecular inter­actions shown as in Fig. 2[link].

Synthesis and crystallization

Benzil (1.06 g; 5 mmol), 4-pyridaldehyde (535 mg, 5 mmol), ammonium acetate (390 mg, 5 mmol) and mono­ethano­lamine (305 mg, 5 mmol) were added to diethyl ammonium hydrogen sulfate (0.342 g, 2 mmol) in an oil bath at room temperature. The resulting mixture was heated at 373 K for an appropriate time. The reaction was monitored by TLC until completion, then washed with water. The resulting solid product was purified by recrystallization from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H19N3O
Mr 341.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 5.7619 (2), 22.1304 (6), 13.6271 (4)
β (°) 99.102 (1)
V3) 1715.75 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.19 × 0.06 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.89, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 13033, 3311, 2771
Rint 0.043
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.05
No. of reflections 3311
No. of parameters 312
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-[4,5-Diphenyl-2-(pyridin-4-yl)-1H-imidazol-1-yl]ethanol top
Crystal data top
C22H19N3OF(000) = 720
Mr = 341.40Dx = 1.322 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 5.7619 (2) ÅCell parameters from 8994 reflections
b = 22.1304 (6) Åθ = 3.9–72.4°
c = 13.6271 (4) ŵ = 0.66 mm1
β = 99.102 (1)°T = 150 K
V = 1715.75 (9) Å3Plate, colourless
Z = 40.19 × 0.06 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3311 independent reflections
Radiation source: INCOATEC IµS micro-focus source2771 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.9°
ω scansh = 76
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2727
Tmin = 0.89, Tmax = 0.99l = 1416
13033 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.034P)2 + 0.6309P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3311 reflectionsΔρmax = 0.20 e Å3
312 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87239 (19)0.24860 (5)0.84508 (8)0.0303 (3)
H10.950 (4)0.2368 (9)0.9083 (17)0.047 (6)*
N10.5090 (2)0.30083 (5)0.69732 (8)0.0191 (3)
N20.5459 (2)0.28733 (5)0.53872 (8)0.0205 (3)
N30.0316 (2)0.11711 (6)0.57069 (10)0.0293 (3)
C10.4465 (2)0.26669 (6)0.61350 (10)0.0194 (3)
C20.6600 (2)0.34551 (6)0.67341 (10)0.0193 (3)
C30.6802 (2)0.33646 (6)0.57505 (10)0.0203 (3)
C40.2844 (2)0.21494 (6)0.60331 (10)0.0199 (3)
C50.0828 (3)0.21276 (7)0.64771 (11)0.0245 (3)
H50.038 (3)0.2457 (8)0.6905 (14)0.036 (5)*
C60.0644 (3)0.16325 (7)0.63044 (12)0.0284 (3)
H60.205 (3)0.1610 (7)0.6626 (13)0.027 (4)*
C70.1622 (3)0.12002 (7)0.52763 (11)0.0266 (3)
H70.193 (3)0.0858 (8)0.4844 (14)0.033 (5)*
C80.3235 (3)0.16674 (6)0.54193 (11)0.0231 (3)
H80.461 (3)0.1664 (8)0.5087 (14)0.035 (5)*
C90.7402 (2)0.39592 (6)0.74245 (10)0.0199 (3)
C100.9638 (3)0.39745 (7)0.79861 (11)0.0273 (3)
H101.072 (3)0.3620 (9)0.7949 (14)0.040 (5)*
C111.0354 (3)0.44658 (8)0.85989 (12)0.0314 (4)
H111.194 (4)0.4466 (9)0.8994 (14)0.041 (5)*
C120.8828 (3)0.49414 (7)0.86600 (11)0.0279 (3)
H120.933 (3)0.5292 (8)0.9085 (14)0.034 (5)*
C130.6582 (3)0.49243 (7)0.81202 (11)0.0287 (3)
H130.549 (3)0.5263 (9)0.8187 (15)0.041 (5)*
C140.5882 (3)0.44385 (7)0.75022 (11)0.0247 (3)
H140.438 (3)0.4424 (8)0.7109 (14)0.036 (5)*
C150.8124 (2)0.37184 (6)0.51075 (11)0.0217 (3)
C161.0341 (3)0.39503 (7)0.54713 (12)0.0279 (3)
H161.111 (3)0.3872 (8)0.6190 (15)0.038 (5)*
C171.1579 (3)0.42864 (8)0.48648 (13)0.0339 (4)
H171.320 (4)0.4451 (9)0.5137 (15)0.048 (6)*
C181.0623 (3)0.43897 (8)0.38833 (13)0.0346 (4)
H181.151 (3)0.4626 (9)0.3462 (14)0.041 (5)*
C190.8441 (3)0.41520 (8)0.35077 (12)0.0327 (4)
H190.775 (4)0.4217 (9)0.2804 (16)0.050 (6)*
C200.7190 (3)0.38220 (7)0.41117 (11)0.0273 (3)
H200.564 (3)0.3656 (9)0.3850 (14)0.038 (5)*
C210.4766 (2)0.28527 (7)0.79934 (10)0.0216 (3)
H21A0.516 (3)0.3223 (8)0.8409 (13)0.030 (4)*
H21B0.312 (3)0.2750 (8)0.8021 (13)0.031 (4)*
C220.6319 (3)0.23327 (7)0.84114 (11)0.0261 (3)
H22A0.592 (3)0.2235 (8)0.9102 (13)0.030 (4)*
H22B0.592 (3)0.1977 (8)0.7982 (13)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0274 (5)0.0430 (7)0.0204 (6)0.0062 (5)0.0038 (4)0.0075 (5)
N10.0212 (6)0.0200 (6)0.0154 (6)0.0010 (5)0.0011 (4)0.0012 (4)
N20.0215 (6)0.0217 (6)0.0175 (6)0.0019 (5)0.0009 (4)0.0012 (4)
N30.0306 (7)0.0267 (7)0.0294 (7)0.0049 (5)0.0015 (5)0.0018 (5)
C10.0207 (7)0.0202 (7)0.0163 (7)0.0000 (5)0.0000 (5)0.0018 (5)
C20.0185 (6)0.0207 (7)0.0179 (7)0.0003 (5)0.0004 (5)0.0001 (5)
C30.0203 (7)0.0206 (7)0.0190 (7)0.0001 (5)0.0004 (5)0.0004 (5)
C40.0207 (7)0.0214 (7)0.0160 (7)0.0003 (5)0.0013 (5)0.0007 (5)
C50.0233 (7)0.0268 (8)0.0232 (8)0.0012 (6)0.0024 (6)0.0019 (6)
C60.0238 (7)0.0329 (8)0.0287 (8)0.0036 (6)0.0045 (6)0.0009 (6)
C70.0315 (8)0.0231 (7)0.0239 (8)0.0012 (6)0.0005 (6)0.0014 (6)
C80.0247 (7)0.0247 (7)0.0197 (7)0.0008 (6)0.0023 (6)0.0008 (5)
C90.0218 (7)0.0220 (7)0.0157 (7)0.0022 (5)0.0024 (5)0.0003 (5)
C100.0237 (7)0.0338 (8)0.0232 (8)0.0023 (6)0.0003 (6)0.0059 (6)
C110.0245 (8)0.0421 (9)0.0256 (8)0.0064 (7)0.0021 (6)0.0081 (7)
C120.0385 (9)0.0248 (8)0.0199 (8)0.0100 (6)0.0027 (6)0.0038 (6)
C130.0377 (9)0.0218 (7)0.0258 (8)0.0032 (7)0.0024 (6)0.0017 (6)
C140.0236 (7)0.0253 (7)0.0232 (8)0.0005 (6)0.0022 (6)0.0019 (6)
C150.0226 (7)0.0209 (7)0.0216 (7)0.0013 (5)0.0036 (5)0.0002 (5)
C160.0267 (8)0.0329 (8)0.0236 (8)0.0047 (6)0.0026 (6)0.0014 (6)
C170.0289 (8)0.0396 (9)0.0336 (9)0.0089 (7)0.0068 (7)0.0011 (7)
C180.0360 (9)0.0358 (9)0.0344 (10)0.0050 (7)0.0125 (7)0.0068 (7)
C190.0345 (9)0.0375 (9)0.0260 (9)0.0012 (7)0.0042 (7)0.0079 (7)
C200.0256 (8)0.0319 (8)0.0239 (8)0.0009 (6)0.0018 (6)0.0032 (6)
C210.0239 (7)0.0265 (7)0.0145 (7)0.0023 (6)0.0035 (5)0.0015 (5)
C220.0307 (8)0.0281 (8)0.0190 (8)0.0017 (6)0.0024 (6)0.0032 (6)
Geometric parameters (Å, º) top
O1—C221.4191 (19)C10—H101.009 (19)
O1—H10.94 (2)C11—C121.382 (2)
N1—C11.3693 (17)C11—H110.98 (2)
N1—C21.3894 (17)C12—C131.384 (2)
N1—C211.4726 (18)C12—H120.984 (19)
N2—C11.3267 (18)C13—C141.386 (2)
N2—C31.3799 (17)C13—H130.99 (2)
N3—C61.338 (2)C14—H140.94 (2)
N3—C71.342 (2)C15—C161.393 (2)
C1—C41.4703 (19)C15—C201.397 (2)
C2—C31.378 (2)C16—C171.390 (2)
C2—C91.4851 (19)C16—H161.02 (2)
C3—C151.4740 (19)C17—C181.383 (2)
C4—C51.393 (2)C17—H171.02 (2)
C4—C81.3956 (19)C18—C191.384 (2)
C5—C61.383 (2)C18—H180.98 (2)
C5—H50.992 (19)C19—C201.385 (2)
C6—H60.982 (17)C19—H190.99 (2)
C7—C81.383 (2)C20—H200.980 (19)
C7—H70.993 (18)C21—C221.513 (2)
C8—H80.975 (19)C21—H21A1.001 (18)
C9—C141.390 (2)C21—H21B0.982 (18)
C9—C101.391 (2)C22—H22A1.028 (18)
C10—C111.393 (2)C22—H22B0.986 (18)
C22—O1—H1106.5 (13)C11—C12—C13119.82 (14)
C1—N1—C2106.80 (11)C11—C12—H12120.4 (11)
C1—N1—C21127.05 (11)C13—C12—H12119.8 (11)
C2—N1—C21124.43 (11)C12—C13—C14120.12 (14)
C1—N2—C3106.34 (11)C12—C13—H13118.9 (12)
C6—N3—C7115.92 (13)C14—C13—H13121.0 (12)
N2—C1—N1111.23 (12)C13—C14—C9120.80 (14)
N2—C1—C4122.72 (12)C13—C14—H14121.5 (11)
N1—C1—C4126.01 (12)C9—C14—H14117.7 (11)
C3—C2—N1106.07 (12)C16—C15—C20118.40 (14)
C3—C2—C9131.28 (13)C16—C15—C3121.02 (13)
N1—C2—C9121.97 (12)C20—C15—C3120.57 (13)
C2—C3—N2109.56 (12)C17—C16—C15120.90 (15)
C2—C3—C15129.19 (13)C17—C16—H16118.3 (11)
N2—C3—C15121.22 (12)C15—C16—H16120.8 (11)
C5—C4—C8117.29 (13)C18—C17—C16120.03 (15)
C5—C4—C1123.16 (13)C18—C17—H17119.7 (12)
C8—C4—C1119.45 (12)C16—C17—H17120.3 (12)
C6—C5—C4119.00 (14)C17—C18—C19119.63 (15)
C6—C5—H5118.3 (11)C17—C18—H18119.4 (12)
C4—C5—H5122.7 (11)C19—C18—H18121.0 (11)
N3—C6—C5124.48 (14)C18—C19—C20120.54 (15)
N3—C6—H6116.0 (10)C18—C19—H19120.5 (12)
C5—C6—H6119.5 (10)C20—C19—H19119.0 (12)
N3—C7—C8124.12 (14)C19—C20—C15120.48 (14)
N3—C7—H7117.7 (10)C19—C20—H20120.8 (11)
C8—C7—H7118.2 (10)C15—C20—H20118.8 (11)
C7—C8—C4119.16 (13)N1—C21—C22112.19 (12)
C7—C8—H8120.5 (11)N1—C21—H21A107.0 (10)
C4—C8—H8120.3 (11)C22—C21—H21A110.0 (10)
C14—C9—C10118.64 (13)N1—C21—H21B111.0 (10)
C14—C9—C2119.02 (12)C22—C21—H21B109.1 (10)
C10—C9—C2122.34 (13)H21A—C21—H21B107.5 (14)
C9—C10—C11120.64 (14)O1—C22—C21110.38 (12)
C9—C10—H10118.7 (11)O1—C22—H22A112.1 (10)
C11—C10—H10120.7 (11)C21—C22—H22A107.4 (10)
C12—C11—C10119.95 (14)O1—C22—H22B110.4 (10)
C12—C11—H11120.7 (11)C21—C22—H22B108.3 (10)
C10—C11—H11119.3 (11)H22A—C22—H22B108.1 (14)
C3—N2—C1—N10.56 (15)C3—C2—C9—C1491.39 (19)
C3—N2—C1—C4178.53 (12)N1—C2—C9—C1477.78 (17)
C2—N1—C1—N20.68 (15)C3—C2—C9—C1087.5 (2)
C21—N1—C1—N2166.12 (12)N1—C2—C9—C10103.31 (17)
C2—N1—C1—C4178.58 (13)C14—C9—C10—C111.2 (2)
C21—N1—C1—C416.0 (2)C2—C9—C10—C11177.67 (14)
C1—N1—C2—C30.51 (14)C9—C10—C11—C120.6 (2)
C21—N1—C2—C3166.43 (12)C10—C11—C12—C130.7 (2)
C1—N1—C2—C9172.07 (12)C11—C12—C13—C141.5 (2)
C21—N1—C2—C922.0 (2)C12—C13—C14—C90.9 (2)
N1—C2—C3—N20.19 (15)C10—C9—C14—C130.5 (2)
C9—C2—C3—N2170.65 (13)C2—C9—C14—C13178.47 (14)
N1—C2—C3—C15177.92 (13)C2—C3—C15—C1639.6 (2)
C9—C2—C3—C157.5 (2)N2—C3—C15—C16142.47 (14)
C1—N2—C3—C20.22 (15)C2—C3—C15—C20141.27 (15)
C1—N2—C3—C15178.51 (12)N2—C3—C15—C2036.6 (2)
N2—C1—C4—C5140.18 (14)C20—C15—C16—C171.2 (2)
N1—C1—C4—C537.5 (2)C3—C15—C16—C17179.66 (14)
N2—C1—C4—C835.95 (19)C15—C16—C17—C180.6 (3)
N1—C1—C4—C8146.38 (14)C16—C17—C18—C190.6 (3)
C8—C4—C5—C61.1 (2)C17—C18—C19—C201.2 (3)
C1—C4—C5—C6177.27 (13)C18—C19—C20—C150.7 (3)
C7—N3—C6—C51.5 (2)C16—C15—C20—C190.5 (2)
C4—C5—C6—N32.2 (2)C3—C15—C20—C19179.69 (14)
C6—N3—C7—C80.2 (2)C1—N1—C21—C2268.45 (17)
N3—C7—C8—C41.1 (2)C2—N1—C21—C2294.58 (15)
C5—C4—C8—C70.5 (2)N1—C21—C22—O161.03 (16)
C1—C4—C8—C7175.89 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.94 (2)1.85 (2)2.7857 (16)169.4 (19)
C5—H5···O1ii0.992 (19)2.448 (19)3.2194 (18)134.3 (14)
C13—H13···N3iii0.99 (2)2.52 (2)3.327 (2)138.0 (15)
C7—H7···Cg1iv0.993 (18)2.73 (2)3.588 (2)145 (1)
C18—H18···Cg1v0.98 (2)2.93 (2)3.828 (2)153 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x1/2, y+1/2, z1/2; (v) x+2, y+1, z+1.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBhatnagar, A., Sharma, P. K. & Kumar, N. A. (2011). Int. J. PharmTech Res. 3, 268–282.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, J. R. (2010). Pharmacophore, 1, 167–177.  CAS Google Scholar
First citationRomero, D. H., Heredia, V. E. T., García-Barradas, O., López, M. E. M. & Pavón, E. S. (2014). J. Chem. Biochem. 2, 45–83.  CrossRef Google Scholar
First citationShalini, K., Sharma, P. K. & Kumar, N. (2010). Der Chem. Sin. 1, 36–47.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds