metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[μ2-4,4′-bis­­(pyridin-3-ylethyn­yl)-1,1′-bi­phenyl-κ2N:N′]bis­­(μ2-thio­cyanato-κ2N:S)bis­­(thio­cyanato-κS)dimercury(II)]

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, People's Republic of China
*Correspondence e-mail: cyrstalclear@126.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 13 December 2016; accepted 12 January 2017; online 17 January 2017)

In the title polymer, [Hg2(SCN)4(C26H16N2)]n, the two equivalent HgII atoms are coordinated by one N atom of a bridging 4,4′-bis­(pyridin-3-ylethyn­yl)-1,1′-biphenyl ligand, two S atoms of two thio­cyanates and one N atom of a thio­cyanate, giving rise to a distored tetrahedral coordination environment. Two thio­cyanate ligands bridge symmetry-related metal atoms to form a polymeric chain extending parallel to [001], and another bridging mode is accomplished by the organic ligand that is located about an inversion centre. The dihedral angle between the coordinating pyridine ring and the benzene ring is 11.4 (2)°, and the two coordinating pyridine rings in the organic ligand are parallel by symmetry. The point group of the ligand in the compound is thus close to C2h. The result of the mode of the organic ligands is the formation of zigzag sheets connected via bridging thio­cyanate ligands.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, coordination polymers (CPs) have attracted much attention due to their fascinating structures as well as their potential applications in gas storage and separation, heterogeneous catalysis, proton conductivity, and luminescent sensors, etc. Organic ligands play a key role in the construction of CPs with various structures and topologies with pyridine-based ligands being widely used. A mercury-based coordination polymer was described by Wang et al. (2014[Wang, B., Li, M. & Xie, Y. (2014). Acta Cryst. E70, m208.]).

In this work, an angular pyridine-based ligand, 4,4′-bis­(pyridin-3-ylethyn­yl)-1,1′-biphenyl (L) was synthesized and employed to react with Hg(SCN)2 to afford the title complex, [Hg2(SCN)4(L)]n. The HgII atom is coordinated by one N atom of an L ligand, two S atoms of two thio­cyanate ligands (one bridging, one terminal) and one N atom of the another bridging thiocyanate ligand, in a distorted tetrahedral environment (Table 1[link] and Fig. 1[link]). The dihedral angle between the coordinating pyridine ring and the benzene ring is 11.4 (2)°, and the two coordinating pyridine rings are parallel, by symmetry. The formed inorganic [Hg(SCN)2]n chains are bridged by the organic ligands into a three-dimensional network, whereby the organic ligands are arranged in zigzag sheets approximately parallel to (010) (Fig. 2[link]). Within an organic sheet ππ interactions between nearly parallel aligned pyridine and benzene rings of neighbouring ligands are evident, with a centroid-to-centroid distance of 3.655 (3)  Å.

Table 1
Selected geometric parameters (Å, °)

Hg1—N1 2.392 (4) Hg1—S2i 2.4325 (13)
Hg1—S1 2.4170 (13) Hg1—N2 2.568 (5)
       
N1—Hg1—S1 109.28 (10) N1—Hg1—N2 84.04 (13)
N1—Hg1—S2i 99.19 (10) S1—Hg1—N2 98.29 (10)
S1—Hg1—S2i 148.61 (5) S2i—Hg1—N2 97.50 (11)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The coordination mode of the title complex, with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (i) −2 − x, 1 − y, −z; (ii) x, −y + [{1\over 2}], z − [{1\over 2}].]
[Figure 2]
Figure 2
The zigzag sheets of the complex, viewed down the c axis, with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity.

Synthesis and crystallization

The organic ligand L, 4,4′-bis­(pyridin-3-ylethyn­yl)-1,1′-biphenyl, was synthesized following the reported procedure (Kaae et al., 2012[Kaae, B. H., Harpsøe, K., Kvist, T., Mathiesen, J. M., Mølck, C., Gloriam, D., Jimenez, H. N., Uberti, M. A., Nielsen, S. M., Nielsen, B., Bräuner-Osborne, H., Sauerberg, P., Clausen, R. P. & Madsen, U. (2012). ChemMedChem, 7, 440-451.]). 3 ml of a methanol solution of Hg(SCN)2 (0.1 mmol, 31 mg) was layered upon 3 ml of a chloro­form solution of L (0.2 mmol, 70 mg). After 4 d, yellow crystals of the title complex suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The maximum and minimum residual electron density peaks of 2.15 and 1.73 e Å−3, respectively, are located 0.93 and 1.00 Å from the Hg atom.

Table 2
Experimental details

Crystal data
Chemical formula [Hg2(SCN)4(C26H16N2)]
Mr 989.9
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.9175 (5), 17.6267 (13), 12.0029 (9)
β (°) 91.017 (1)
V3) 1463.32 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.80
Crystal size (mm) 0.20 × 0.18 × 0.18
 
Data collection
Diffractometer Bruker SMART 1000 CCD area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.221, 0.247
No. of measured, independent and observed [I > 2σ(I)] reflections 7862, 2726, 2275
Rint 0.030
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.062, 1.02
No. of reflections 2726
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.52, −0.78
Computer programs: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015).

catena-Poly[[µ2-4,4'-bis(pyridin-3-ylethynyl)-1,1'-biphenyl-κ2N:N']bis(µ2-thiocyanato-κ2N:S)bis(thiocyanato-κS)dimercury(II)] top
Crystal data top
[Hg2(SCN)4(C26H16N2)]F(000) = 924
Mr = 989.9Dx = 2.247 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.9175 (5) ÅCell parameters from 2275 reflections
b = 17.6267 (13) Åθ = 2.1–25.5°
c = 12.0029 (9) ŵ = 10.80 mm1
β = 91.017 (1)°T = 100 K
V = 1463.32 (19) Å3Block, yellow
Z = 20.20 × 0.18 × 0.18 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2275 reflections with I > 2σ(I)
ω and phi scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
θmax = 25.5°, θmin = 2.1°
Tmin = 0.221, Tmax = 0.247h = 88
7862 measured reflectionsk = 2021
2726 independent reflectionsl = 1014
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0265P)2 + 1.8001P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2726 reflectionsΔρmax = 1.52 e Å3
190 parametersΔρmin = 0.78 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.34026 (3)0.25411 (2)0.44910 (2)0.01732 (8)
S10.65961 (18)0.27179 (8)0.52991 (12)0.0205 (3)
S20.1157 (2)0.32566 (8)0.84385 (12)0.0227 (3)
N10.1994 (6)0.3753 (2)0.4098 (3)0.0156 (9)
N20.1456 (6)0.2626 (2)0.6289 (4)0.0192 (10)
N30.5993 (7)0.2468 (3)0.7608 (4)0.0295 (12)
C10.3013 (7)0.4384 (3)0.4306 (5)0.0204 (12)
H10.4255050.4336050.4648840.025*
C20.2349 (8)0.5101 (3)0.4046 (5)0.0248 (13)
H20.3115750.5534570.4214430.030*
C30.0562 (7)0.5181 (3)0.3540 (5)0.0214 (12)
H30.0079570.5670350.3353330.026*
C40.0549 (7)0.4526 (3)0.3300 (4)0.0163 (11)
C50.0234 (7)0.3833 (3)0.3607 (4)0.0182 (11)
H50.0507790.3388610.3464610.022*
C60.2388 (7)0.4581 (3)0.2727 (4)0.0182 (12)
C70.3830 (7)0.4664 (3)0.2206 (5)0.0189 (12)
C80.5611 (7)0.4759 (3)0.1569 (4)0.0143 (11)
C90.6090 (7)0.5459 (3)0.1106 (5)0.0185 (12)
H90.5248890.5879460.1217100.022*
C100.7775 (7)0.5550 (3)0.0487 (4)0.0147 (11)
H100.8058170.6029420.0160400.018*
C110.9079 (7)0.4947 (3)0.0330 (4)0.0145 (11)
C120.8575 (7)0.4249 (3)0.0807 (4)0.0159 (11)
H120.9433420.3832260.0717790.019*
C130.6881 (7)0.4148 (3)0.1398 (4)0.0175 (11)
H130.6565480.3661820.1691640.021*
C140.6192 (8)0.2577 (3)0.6661 (5)0.0211 (12)
C150.1390 (7)0.2870 (3)0.7177 (5)0.0169 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01973 (12)0.01986 (12)0.01214 (12)0.00123 (9)0.00573 (8)0.00026 (9)
S10.0173 (6)0.0301 (7)0.0139 (7)0.0010 (6)0.0030 (6)0.0026 (6)
S20.0288 (7)0.0258 (7)0.0135 (7)0.0112 (6)0.0051 (6)0.0039 (6)
N10.015 (2)0.021 (2)0.010 (2)0.0006 (17)0.0049 (19)0.0024 (18)
N20.019 (2)0.022 (2)0.016 (3)0.0052 (18)0.004 (2)0.003 (2)
N30.027 (3)0.047 (3)0.014 (3)0.001 (2)0.007 (2)0.001 (2)
C10.013 (3)0.031 (3)0.017 (3)0.000 (2)0.009 (2)0.002 (2)
C20.026 (3)0.022 (3)0.026 (4)0.006 (2)0.004 (3)0.004 (2)
C30.024 (3)0.018 (3)0.022 (3)0.003 (2)0.006 (3)0.000 (2)
C40.014 (3)0.027 (3)0.008 (3)0.005 (2)0.001 (2)0.002 (2)
C50.017 (3)0.024 (3)0.013 (3)0.004 (2)0.002 (2)0.001 (2)
C60.020 (3)0.022 (3)0.013 (3)0.003 (2)0.001 (2)0.004 (2)
C70.017 (3)0.021 (3)0.018 (3)0.000 (2)0.002 (2)0.001 (2)
C80.010 (2)0.023 (3)0.010 (3)0.0043 (19)0.002 (2)0.000 (2)
C90.012 (3)0.020 (3)0.023 (3)0.000 (2)0.004 (2)0.001 (2)
C100.016 (2)0.017 (2)0.011 (3)0.005 (2)0.001 (2)0.001 (2)
C110.012 (2)0.021 (3)0.010 (3)0.002 (2)0.001 (2)0.000 (2)
C120.017 (3)0.020 (3)0.010 (3)0.001 (2)0.001 (2)0.001 (2)
C130.022 (3)0.017 (2)0.013 (3)0.005 (2)0.000 (2)0.001 (2)
C140.015 (3)0.027 (3)0.021 (3)0.000 (2)0.006 (2)0.003 (2)
C150.012 (3)0.021 (3)0.018 (3)0.000 (2)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
Hg1—N12.392 (4)C4—C51.384 (7)
Hg1—S12.4170 (13)C4—C61.438 (7)
Hg1—S2i2.4325 (13)C5—H50.9500
Hg1—N22.568 (5)C6—C71.178 (7)
S1—C141.682 (6)C7—C81.448 (7)
S2—C151.671 (6)C8—C91.392 (7)
N1—C11.338 (6)C8—C131.402 (7)
N1—C51.351 (6)C9—C101.381 (7)
N2—C151.151 (7)C9—H90.9500
N3—C141.163 (8)C10—C111.404 (7)
C1—C21.378 (7)C10—H100.9500
C1—H10.9500C11—C121.398 (7)
C2—C31.375 (7)C11—C11ii1.500 (9)
C2—H20.9500C12—C131.371 (7)
C3—C41.413 (7)C12—H120.9500
C3—H30.9500C13—H130.9500
N1—Hg1—S1109.28 (10)N1—C5—H5118.2
N1—Hg1—S2i99.19 (10)C4—C5—H5118.2
S1—Hg1—S2i148.61 (5)C7—C6—C4175.0 (6)
N1—Hg1—N284.04 (13)C6—C7—C8179.4 (6)
S1—Hg1—N298.29 (10)C9—C8—C13118.6 (4)
S2i—Hg1—N297.50 (11)C9—C8—C7120.5 (4)
C14—S1—Hg1101.81 (19)C13—C8—C7120.9 (4)
C15—S2—Hg1iii99.43 (18)C10—C9—C8120.7 (5)
C1—N1—C5117.6 (4)C10—C9—H9119.6
C1—N1—Hg1119.6 (3)C8—C9—H9119.6
C5—N1—Hg1122.7 (3)C9—C10—C11121.2 (5)
C15—N2—Hg1146.1 (4)C9—C10—H10119.4
N1—C1—C2123.2 (5)C11—C10—H10119.4
N1—C1—H1118.4C12—C11—C10117.1 (4)
C2—C1—H1118.4C12—C11—C11ii121.9 (6)
C3—C2—C1119.2 (5)C10—C11—C11ii121.0 (6)
C3—C2—H2120.4C13—C12—C11122.1 (5)
C1—C2—H2120.4C13—C12—H12118.9
C2—C3—C4119.2 (5)C11—C12—H12118.9
C2—C3—H3120.4C12—C13—C8120.2 (5)
C4—C3—H3120.4C12—C13—H13119.9
C5—C4—C3117.3 (5)C8—C13—H13119.9
C5—C4—C6121.7 (5)N3—C14—S1177.1 (5)
C3—C4—C6121.0 (5)N2—C15—S2176.1 (5)
N1—C5—C4123.6 (5)
C5—N1—C1—C20.2 (8)C13—C8—C9—C100.3 (8)
Hg1—N1—C1—C2176.3 (4)C7—C8—C9—C10179.2 (5)
N1—C1—C2—C30.6 (9)C8—C9—C10—C111.7 (8)
C1—C2—C3—C40.1 (9)C9—C10—C11—C121.4 (8)
C2—C3—C4—C50.8 (8)C9—C10—C11—C11ii179.1 (6)
C2—C3—C4—C6177.2 (5)C10—C11—C12—C130.4 (8)
C1—N1—C5—C40.8 (8)C11ii—C11—C12—C13179.1 (6)
Hg1—N1—C5—C4175.2 (4)C11—C12—C13—C81.8 (8)
C3—C4—C5—N11.3 (8)C9—C8—C13—C121.5 (8)
C6—C4—C5—N1176.8 (5)C7—C8—C13—C12179.1 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x2, y+1, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Qilu University of Technology for supporting this work.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaae, B. H., Harpsøe, K., Kvist, T., Mathiesen, J. M., Mølck, C., Gloriam, D., Jimenez, H. N., Uberti, M. A., Nielsen, S. M., Nielsen, B., Bräuner-Osborne, H., Sauerberg, P., Clausen, R. P. & Madsen, U. (2012). ChemMedChem, 7, 440–451.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, B., Li, M. & Xie, Y. (2014). Acta Cryst. E70, m208.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds