metal-organic compounds
Dichlorido{2-[(5-methyl-1H-pyrazol-3-yl-κN2)methyl]-1H-1,3-benzimidazole-κN3}zinc
aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: karimlab09@gmail.com
The 2(C12H12N4)], contains two independent molecules having similar conformations. The coordination about the ZnII atom is distorted tetrahedral, with the geometrical constraints of the chelating ligand responsible for the observed distortion. Each of the independent molecules forms chains in the crystal through pairs of N—H⋯Cl hydrogen bonds, using the pyrazole and benzimidazole N—H groups as donors. The first molecule forms chains running parallel to the b axis, while the other molecule affords the same kind of one-dimensional supramolecular structure parallel to the a axis. The structure was refined as a two-component twin with BASF = 0.0437 (4).
of the title complex, [ZnClKeywords: crystal structure; pyrazole; benzimidazole; zinc; hydrogen bonding.
CCDC reference: 1529235
Structure description
Benzimidazole and pyrazole derivatives have shown significant anti-cancer activities when evaluated for their potential antiproliferative activity against human tumour cells (Reddy et al., 2015). The ability of the benzimidazole derivatives to form stable complexes with metal ions gives rise to a variety of metal-ligand coordination modes. Their reactions with metal salts have played an important role in the development of coordination chemistry (Téllez et al., 2008; Qiao et al., 2014). Several research teams investigated the coordination behaviour of benzimidazole derivatives toward transition metal ions (Constable & Steel, 1989). Other studies have explored the biological activity of coordination compounds containing the benzimidazole moiety (Devereux et al., 2007). Benzimidazole-based complexes have relatively high antibacterial and antifungal power (Bouchouit et al., 2016). Their zinc complexes, in addition to their antimicrobial activity, have been used in in vitro and in vivo anticancer studies and have been shown to have an important role in the chemotherapeutic process (Tabassum et al., 2012) as well as exerting a significant cytotoxic activity (Li et al., 2012).
Continuing our research in this field (Chkirate et al., 2001; Sbai et al., 2002), we synthesized a zinc chloride complex having 2-[(5-methylpyrazol-3-yl)methyl]benzimidazole, obtained by the action of hydrazine on 4-acetonylidene-1,5-benzodiazepin-2-one (Essassi et al., 1987), as the main ligand. The of the title compound consists of two independent molecules with modest but distinct differences in their conformations (Fig. 1). Each zinc atom adopts a distorted tetrahedral coordination with angles at Zn ranging from 92.17 (18) to 120.88 (15)°, with the smallest angle in each molecule due to the geometrical constraints of the chelating ligand.
In the crystal, the molecule containing Zn1 forms chains running parallel to the b axis through a combination of N2—H2A⋯Cl1i and N4—H4A⋯Cl2ii [symmetry codes: (i) x, 1 + y, z; (ii) −x, −y, 1 − z] hydrogen bonds. That containing Zn2 similarly forms chains parallel to the a axis through a combination of N6—H6A⋯Cl4iii and N8—H8C⋯Cl3iv [symmetry codes: (iii) 1 + x, y, z; (iv) −x, 1 − y, 2 − z] hydrogen bonds (Table 1 and Figs. 2 and 3).
Synthesis and crystallization
6.25 × 10−5 mol of ZnC12 dissolved in 2.5 ml of ethanol was added to a solution of 6.25 × 10−5 mol of 2-[(5-methylpyrazol-3-yl)methyl]benzimidazole in 2.5 ml of ethanol. The mixture was warmed slightly and then left at room temperature. After 24 h, some white crystals were observed in the mother liquor. The solution was filtered and then evaporated in an oven to give single crystals with a yield of 78%.
Refinement
Crystal and . Analysis of 2601 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the reciprocal axis [10]. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW. The model was refined as a two-component twin with BASF = 0.0437 (4) and −0.00559 1.00489 0.04907/0.99567 0.00642 0.04978/−0.01138 − 0.01717 − 1.00083. The largest difference peak is 0.6 Å from Zn2 while the largest hole is 1.1 Å from Zn2. Other smaller but noticeable difference peaks are < 1 Å from the metal atoms. We attribute these to errors in the absorption correction due to the anisotropic habit of the crystal.
details are given in Table 2Structural data
CCDC reference: 1529235
https://doi.org/10.1107/S241431461700116X/bh4021sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461700116X/bh4021Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461700116X/bh4021Isup3.cdx
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).[ZnCl2(C12H12N4)] | Z = 4 |
Mr = 348.53 | F(000) = 704 |
Triclinic, P1 | Dx = 1.641 Mg m−3 |
a = 7.7912 (3) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 7.8345 (3) Å | Cell parameters from 9898 reflections |
c = 23.3600 (9) Å | θ = 3.8–72.4° |
α = 98.310 (1)° | µ = 5.83 mm−1 |
β = 90.397 (2)° | T = 150 K |
γ = 90.701 (2)° | Plate, colourless |
V = 1410.77 (9) Å3 | 0.18 × 0.08 × 0.05 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 19443 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 11989 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.039 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.6°, θmin = 3.8° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | k = −9→9 |
Tmin = 0.46, Tmax = 0.76 | l = −29→29 |
19443 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: mixed |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.041P)2 + 3.0857P] where P = (Fo2 + 2Fc2)/3 |
19443 reflections | (Δ/σ)max = 0.001 |
346 parameters | Δρmax = 2.44 e Å−3 |
0 restraints | Δρmin = −1.49 e Å−3 |
0 constraints |
Experimental. =? |
Refinement. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.18794 (9) | 0.28030 (9) | 0.56443 (3) | 0.0263 (2) | |
Cl1 | 0.43018 (18) | 0.14063 (17) | 0.58122 (6) | 0.0328 (3) | |
Cl2 | −0.04210 (18) | 0.13877 (17) | 0.59034 (6) | 0.0342 (3) | |
H2A | 0.2996 | 0.9082 | 0.6062 | 0.041* | |
N1 | 0.1925 (6) | 0.5264 (6) | 0.60146 (18) | 0.0244 (9) | |
N2 | 0.2643 (6) | 0.8028 (6) | 0.6138 (2) | 0.0290 (10) | |
N3 | 0.2051 (7) | 0.3469 (6) | 0.4845 (2) | 0.0311 (11) | |
N4 | 0.2061 (7) | 0.2360 (6) | 0.43401 (19) | 0.0314 (11) | |
H4A | 0.1976 | 0.1189 | 0.4300 | 0.038* | |
C1 | 0.1704 (7) | 0.5926 (7) | 0.6593 (2) | 0.0249 (11) | |
C2 | 0.1125 (7) | 0.5128 (8) | 0.7054 (2) | 0.0307 (12) | |
H2 | 0.0790 | 0.3945 | 0.7002 | 0.037* | |
C3 | 0.1061 (8) | 0.6138 (9) | 0.7587 (3) | 0.0365 (14) | |
H3 | 0.0666 | 0.5634 | 0.7909 | 0.044* | |
C4 | 0.1555 (8) | 0.7870 (9) | 0.7671 (3) | 0.0397 (15) | |
H4 | 0.1506 | 0.8510 | 0.8048 | 0.048* | |
C5 | 0.2117 (8) | 0.8678 (8) | 0.7216 (3) | 0.0369 (14) | |
H5 | 0.2452 | 0.9860 | 0.7270 | 0.044* | |
C6 | 0.2166 (7) | 0.7667 (7) | 0.6677 (2) | 0.0272 (11) | |
C7 | 0.2479 (7) | 0.6574 (6) | 0.5757 (2) | 0.0233 (11) | |
C8 | 0.2897 (8) | 0.6581 (7) | 0.5139 (2) | 0.0320 (13) | |
H8A | 0.4111 | 0.6957 | 0.5122 | 0.038* | |
H8B | 0.2192 | 0.7483 | 0.4999 | 0.038* | |
C9 | 0.2672 (7) | 0.4968 (7) | 0.4713 (2) | 0.0249 (11) | |
C10 | 0.3060 (7) | 0.4792 (7) | 0.4129 (2) | 0.0286 (12) | |
H10 | 0.3513 | 0.5661 | 0.3925 | 0.034* | |
C11 | 0.2662 (7) | 0.3110 (7) | 0.3900 (2) | 0.0275 (11) | |
C12 | 0.2785 (9) | 0.2154 (8) | 0.3302 (2) | 0.0379 (14) | |
H12A | 0.1651 | 0.2093 | 0.3115 | 0.057* | |
H12B | 0.3192 | 0.0983 | 0.3319 | 0.057* | |
H12C | 0.3592 | 0.2756 | 0.3078 | 0.057* | |
Zn2 | 0.25313 (8) | 0.28490 (10) | 0.93401 (3) | 0.0254 (2) | |
Cl3 | 0.09426 (16) | 0.50253 (18) | 0.91272 (6) | 0.0309 (3) | |
Cl4 | 0.09997 (16) | 0.03585 (18) | 0.91796 (6) | 0.0320 (3) | |
N5 | 0.4837 (5) | 0.2668 (6) | 0.89591 (18) | 0.0246 (9) | |
N6 | 0.7549 (5) | 0.1970 (6) | 0.88353 (19) | 0.0258 (9) | |
H6A | 0.8604 | 0.1528 | 0.8886 | 0.031* | |
N7 | 0.3582 (5) | 0.2981 (6) | 1.01354 (19) | 0.0274 (10) | |
N8 | 0.2700 (6) | 0.3138 (7) | 1.06422 (19) | 0.0302 (10) | |
H8C | 0.1605 | 0.3533 | 1.0666 | 0.036* | |
C13 | 0.5233 (6) | 0.2698 (7) | 0.8382 (2) | 0.0244 (11) | |
C14 | 0.4239 (7) | 0.3104 (8) | 0.7924 (2) | 0.0310 (12) | |
H14 | 0.3073 | 0.3425 | 0.7975 | 0.037* | |
C15 | 0.5018 (8) | 0.3020 (8) | 0.7394 (2) | 0.0338 (13) | |
H15 | 0.4366 | 0.3280 | 0.7073 | 0.041* | |
C16 | 0.6741 (8) | 0.2564 (8) | 0.7312 (2) | 0.0351 (13) | |
H16 | 0.7229 | 0.2528 | 0.6939 | 0.042* | |
C17 | 0.7748 (7) | 0.2165 (8) | 0.7765 (3) | 0.0330 (13) | |
H17 | 0.8915 | 0.1846 | 0.7713 | 0.040* | |
C18 | 0.6949 (7) | 0.2258 (7) | 0.8302 (2) | 0.0250 (11) | |
C19 | 0.6252 (6) | 0.2239 (7) | 0.9216 (2) | 0.0226 (10) | |
C20 | 0.6553 (7) | 0.2051 (8) | 0.9832 (2) | 0.0301 (12) | |
H20A | 0.7539 | 0.2810 | 0.9972 | 0.036* | |
H20B | 0.6918 | 0.0850 | 0.9843 | 0.036* | |
C21 | 0.5134 (6) | 0.2424 (7) | 1.0263 (2) | 0.0247 (11) | |
C22 | 0.5243 (7) | 0.2259 (7) | 1.0847 (2) | 0.0283 (12) | |
H22 | 0.6212 | 0.1901 | 1.1046 | 0.034* | |
C23 | 0.3677 (7) | 0.2715 (7) | 1.1077 (2) | 0.0267 (11) | |
C24 | 0.3001 (8) | 0.2795 (9) | 1.1675 (2) | 0.0367 (14) | |
H24A | 0.1955 | 0.2085 | 1.1667 | 0.055* | |
H24B | 0.2738 | 0.3993 | 1.1829 | 0.055* | |
H24C | 0.3866 | 0.2360 | 1.1922 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0354 (4) | 0.0185 (3) | 0.0261 (4) | −0.0062 (3) | 0.0028 (3) | 0.0071 (3) |
Cl1 | 0.0330 (7) | 0.0248 (6) | 0.0424 (8) | −0.0043 (6) | 0.0037 (5) | 0.0113 (6) |
Cl2 | 0.0360 (7) | 0.0253 (6) | 0.0423 (8) | −0.0086 (6) | 0.0061 (6) | 0.0087 (6) |
N1 | 0.030 (2) | 0.022 (2) | 0.022 (2) | −0.0043 (19) | −0.0008 (17) | 0.0083 (18) |
N2 | 0.036 (3) | 0.021 (2) | 0.029 (2) | −0.003 (2) | 0.0015 (19) | 0.0030 (19) |
N3 | 0.047 (3) | 0.022 (2) | 0.025 (2) | −0.009 (2) | 0.001 (2) | 0.0046 (19) |
N4 | 0.049 (3) | 0.020 (2) | 0.024 (2) | −0.008 (2) | 0.000 (2) | 0.0020 (18) |
C1 | 0.024 (3) | 0.027 (3) | 0.025 (3) | 0.003 (2) | −0.0003 (19) | 0.007 (2) |
C2 | 0.035 (3) | 0.033 (3) | 0.026 (3) | 0.003 (3) | 0.004 (2) | 0.011 (2) |
C3 | 0.039 (3) | 0.046 (4) | 0.027 (3) | 0.009 (3) | 0.006 (2) | 0.014 (3) |
C4 | 0.043 (3) | 0.048 (4) | 0.027 (3) | 0.007 (3) | 0.002 (2) | 0.000 (3) |
C5 | 0.043 (3) | 0.032 (3) | 0.034 (3) | −0.004 (3) | 0.001 (3) | −0.003 (3) |
C6 | 0.027 (3) | 0.028 (3) | 0.027 (3) | −0.003 (2) | 0.001 (2) | 0.006 (2) |
C7 | 0.026 (3) | 0.017 (2) | 0.027 (3) | −0.004 (2) | −0.001 (2) | 0.003 (2) |
C8 | 0.048 (3) | 0.024 (3) | 0.025 (3) | −0.007 (3) | 0.001 (2) | 0.007 (2) |
C9 | 0.030 (3) | 0.021 (2) | 0.025 (3) | −0.003 (2) | −0.004 (2) | 0.009 (2) |
C10 | 0.034 (3) | 0.026 (3) | 0.027 (3) | −0.003 (2) | 0.003 (2) | 0.011 (2) |
C11 | 0.030 (3) | 0.029 (3) | 0.024 (3) | −0.002 (2) | 0.000 (2) | 0.006 (2) |
C12 | 0.047 (4) | 0.037 (3) | 0.028 (3) | −0.003 (3) | 0.002 (2) | −0.001 (3) |
Zn2 | 0.0158 (3) | 0.0359 (4) | 0.0246 (4) | 0.0054 (3) | −0.0021 (2) | 0.0044 (3) |
Cl3 | 0.0224 (6) | 0.0360 (7) | 0.0354 (7) | 0.0079 (6) | −0.0015 (5) | 0.0082 (6) |
Cl4 | 0.0221 (6) | 0.0331 (7) | 0.0407 (8) | 0.0054 (6) | −0.0050 (5) | 0.0048 (6) |
N5 | 0.019 (2) | 0.034 (2) | 0.020 (2) | 0.002 (2) | −0.0022 (16) | 0.0029 (18) |
N6 | 0.017 (2) | 0.033 (2) | 0.028 (2) | 0.0031 (19) | 0.0013 (16) | 0.0050 (19) |
N7 | 0.019 (2) | 0.039 (3) | 0.024 (2) | 0.005 (2) | −0.0006 (16) | 0.002 (2) |
N8 | 0.022 (2) | 0.043 (3) | 0.025 (2) | 0.008 (2) | 0.0021 (17) | 0.004 (2) |
C13 | 0.020 (2) | 0.029 (3) | 0.024 (3) | 0.001 (2) | −0.0021 (19) | 0.004 (2) |
C14 | 0.026 (3) | 0.041 (3) | 0.026 (3) | 0.003 (3) | −0.005 (2) | 0.007 (2) |
C15 | 0.036 (3) | 0.042 (3) | 0.024 (3) | 0.003 (3) | −0.005 (2) | 0.007 (2) |
C16 | 0.039 (3) | 0.042 (3) | 0.024 (3) | 0.003 (3) | 0.004 (2) | 0.006 (2) |
C17 | 0.025 (3) | 0.042 (3) | 0.033 (3) | 0.002 (3) | 0.006 (2) | 0.005 (3) |
C18 | 0.023 (3) | 0.028 (3) | 0.023 (3) | 0.001 (2) | 0.0006 (19) | 0.002 (2) |
C19 | 0.016 (2) | 0.026 (3) | 0.025 (3) | 0.003 (2) | −0.0004 (18) | 0.003 (2) |
C20 | 0.020 (2) | 0.044 (3) | 0.027 (3) | 0.007 (3) | −0.001 (2) | 0.005 (2) |
C21 | 0.020 (2) | 0.029 (3) | 0.024 (3) | 0.003 (2) | −0.0034 (19) | 0.003 (2) |
C22 | 0.023 (3) | 0.036 (3) | 0.027 (3) | 0.006 (2) | −0.002 (2) | 0.006 (2) |
C23 | 0.025 (3) | 0.031 (3) | 0.024 (3) | 0.002 (2) | −0.002 (2) | 0.002 (2) |
C24 | 0.035 (3) | 0.049 (4) | 0.027 (3) | 0.008 (3) | 0.004 (2) | 0.006 (3) |
Zn1—N1 | 1.996 (4) | Zn2—N5 | 2.007 (4) |
Zn1—N3 | 2.014 (4) | Zn2—N7 | 2.014 (4) |
Zn1—Cl2 | 2.2291 (14) | Zn2—Cl3 | 2.2304 (15) |
Zn1—Cl1 | 2.2533 (16) | Zn2—Cl4 | 2.2577 (16) |
N1—C7 | 1.332 (6) | N5—C19 | 1.322 (7) |
N1—C1 | 1.388 (7) | N5—C13 | 1.389 (6) |
N2—C7 | 1.345 (7) | N6—C19 | 1.350 (6) |
N2—C6 | 1.381 (7) | N6—C18 | 1.377 (7) |
N2—H2A | 0.9088 | N6—H6A | 0.9100 |
N3—C9 | 1.342 (7) | N7—C21 | 1.337 (7) |
N3—N4 | 1.361 (6) | N7—N8 | 1.364 (6) |
N4—C11 | 1.340 (7) | N8—C23 | 1.347 (7) |
N4—H4A | 0.9100 | N8—H8C | 0.9100 |
C1—C6 | 1.392 (8) | C13—C14 | 1.392 (7) |
C1—C2 | 1.396 (7) | C13—C18 | 1.392 (7) |
C2—C3 | 1.377 (8) | C14—C15 | 1.377 (8) |
C2—H2 | 0.9500 | C14—H14 | 0.9500 |
C3—C4 | 1.392 (10) | C15—C16 | 1.400 (9) |
C3—H3 | 0.9500 | C15—H15 | 0.9500 |
C4—C5 | 1.384 (9) | C16—C17 | 1.387 (9) |
C4—H4 | 0.9500 | C16—H16 | 0.9500 |
C5—C6 | 1.390 (8) | C17—C18 | 1.397 (7) |
C5—H5 | 0.9500 | C17—H17 | 0.9500 |
C7—C8 | 1.483 (7) | C19—C20 | 1.484 (7) |
C8—C9 | 1.499 (8) | C20—C21 | 1.504 (7) |
C8—H8A | 0.9900 | C20—H20A | 0.9900 |
C8—H8B | 0.9900 | C20—H20B | 0.9900 |
C9—C10 | 1.387 (7) | C21—C22 | 1.390 (7) |
C10—C11 | 1.379 (8) | C22—C23 | 1.368 (7) |
C10—H10 | 0.9500 | C22—H22 | 0.9500 |
C11—C12 | 1.493 (7) | C23—C24 | 1.489 (7) |
C12—H12A | 0.9800 | C24—H24A | 0.9800 |
C12—H12B | 0.9800 | C24—H24B | 0.9800 |
C12—H12C | 0.9800 | C24—H24C | 0.9800 |
N1—Zn1—N3 | 92.17 (18) | N5—Zn2—N7 | 92.34 (17) |
N1—Zn1—Cl2 | 111.84 (13) | N5—Zn2—Cl3 | 114.47 (14) |
N3—Zn1—Cl2 | 120.88 (15) | N7—Zn2—Cl3 | 119.46 (14) |
N1—Zn1—Cl1 | 112.63 (14) | N5—Zn2—Cl4 | 112.76 (14) |
N3—Zn1—Cl1 | 107.46 (15) | N7—Zn2—Cl4 | 106.71 (15) |
Cl2—Zn1—Cl1 | 110.69 (6) | Cl3—Zn2—Cl4 | 110.02 (6) |
C7—N1—C1 | 106.2 (4) | C19—N5—C13 | 106.9 (4) |
C7—N1—Zn1 | 124.3 (3) | C19—N5—Zn2 | 123.7 (3) |
C1—N1—Zn1 | 128.6 (3) | C13—N5—Zn2 | 128.8 (3) |
C7—N2—C6 | 108.4 (4) | C19—N6—C18 | 108.3 (4) |
C7—N2—H2A | 127.0 | C19—N6—H6A | 128.6 |
C6—N2—H2A | 124.6 | C18—N6—H6A | 122.5 |
C9—N3—N4 | 105.3 (4) | C21—N7—N8 | 105.1 (4) |
C9—N3—Zn1 | 126.2 (4) | C21—N7—Zn2 | 126.4 (4) |
N4—N3—Zn1 | 125.9 (3) | N8—N7—Zn2 | 125.6 (3) |
C11—N4—N3 | 112.0 (4) | C23—N8—N7 | 111.5 (4) |
C11—N4—H4A | 119.3 | C23—N8—H8C | 127.1 |
N3—N4—H4A | 126.6 | N7—N8—H8C | 121.4 |
N1—C1—C6 | 108.9 (4) | N5—C13—C14 | 131.1 (5) |
N1—C1—C2 | 130.4 (5) | N5—C13—C18 | 108.2 (4) |
C6—C1—C2 | 120.7 (5) | C14—C13—C18 | 120.8 (5) |
C3—C2—C1 | 116.8 (6) | C15—C14—C13 | 117.2 (5) |
C3—C2—H2 | 121.6 | C15—C14—H14 | 121.4 |
C1—C2—H2 | 121.6 | C13—C14—H14 | 121.4 |
C2—C3—C4 | 122.3 (5) | C14—C15—C16 | 122.1 (5) |
C2—C3—H3 | 118.8 | C14—C15—H15 | 118.9 |
C4—C3—H3 | 118.8 | C16—C15—H15 | 118.9 |
C5—C4—C3 | 121.3 (6) | C17—C16—C15 | 121.2 (5) |
C5—C4—H4 | 119.3 | C17—C16—H16 | 119.4 |
C3—C4—H4 | 119.3 | C15—C16—H16 | 119.4 |
C4—C5—C6 | 116.5 (6) | C16—C17—C18 | 116.3 (5) |
C4—C5—H5 | 121.8 | C16—C17—H17 | 121.9 |
C6—C5—H5 | 121.8 | C18—C17—H17 | 121.9 |
N2—C6—C5 | 132.3 (5) | N6—C18—C13 | 105.8 (4) |
N2—C6—C1 | 105.3 (5) | N6—C18—C17 | 131.8 (5) |
C5—C6—C1 | 122.4 (5) | C13—C18—C17 | 122.4 (5) |
N1—C7—N2 | 111.1 (5) | N5—C19—N6 | 110.8 (4) |
N1—C7—C8 | 128.6 (5) | N5—C19—C20 | 129.4 (4) |
N2—C7—C8 | 120.3 (5) | N6—C19—C20 | 119.7 (4) |
C7—C8—C9 | 120.1 (5) | C19—C20—C21 | 119.9 (4) |
C7—C8—H8A | 107.3 | C19—C20—H20A | 107.3 |
C9—C8—H8A | 107.3 | C21—C20—H20A | 107.3 |
C7—C8—H8B | 107.3 | C19—C20—H20B | 107.3 |
C9—C8—H8B | 107.3 | C21—C20—H20B | 107.3 |
H8A—C8—H8B | 106.9 | H20A—C20—H20B | 106.9 |
N3—C9—C10 | 109.9 (5) | N7—C21—C22 | 110.4 (4) |
N3—C9—C8 | 124.3 (5) | N7—C21—C20 | 124.2 (5) |
C10—C9—C8 | 125.7 (5) | C22—C21—C20 | 125.4 (5) |
C11—C10—C9 | 106.6 (5) | C23—C22—C21 | 106.3 (5) |
C11—C10—H10 | 126.7 | C23—C22—H22 | 126.9 |
C9—C10—H10 | 126.7 | C21—C22—H22 | 126.9 |
N4—C11—C10 | 106.1 (5) | N8—C23—C22 | 106.7 (5) |
N4—C11—C12 | 121.9 (5) | N8—C23—C24 | 121.5 (5) |
C10—C11—C12 | 131.9 (5) | C22—C23—C24 | 131.8 (5) |
C11—C12—H12A | 109.5 | C23—C24—H24A | 109.5 |
C11—C12—H12B | 109.5 | C23—C24—H24B | 109.5 |
H12A—C12—H12B | 109.5 | H24A—C24—H24B | 109.5 |
C11—C12—H12C | 109.5 | C23—C24—H24C | 109.5 |
H12A—C12—H12C | 109.5 | H24A—C24—H24C | 109.5 |
H12B—C12—H12C | 109.5 | H24B—C24—H24C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl1i | 0.91 | 2.23 | 3.125 (5) | 169 |
N4—H4A···Cl2ii | 0.91 | 2.33 | 3.161 (5) | 152 |
N6—H6A···Cl4iii | 0.91 | 2.24 | 3.133 (5) | 169 |
N8—H8C···Cl3iv | 0.91 | 2.32 | 3.211 (5) | 168 |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y, −z+1; (iii) x+1, y, z; (iv) −x, −y+1, −z+2. |
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Bouchouit, M., Said, M. E., Kara Ali, M., Bouacida, S., Merazig, H., Kacem Chaouche, H., Chibani, A., Zouchoune, B., Belfaitah, A. & Bouraiou, A. (2016). Polyhedron, 119, 248–259. CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636. CAS Google Scholar
Constable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205–223. CAS Google Scholar
Devereux, M., O'Shea, D., O'Connor, H., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). Polyhedron, 26, 4073–4084. CrossRef CAS Google Scholar
Essassi, E. M., Elabbassi, M. & Fifani, J. (1987). Bull. Soc. Chim. Belg. 96, 225–228. CrossRef CAS Google Scholar
Li, M. X., Zhang, L. Z., Chen, C. L., Niu, J. Y. & Ji, B. S. (2012). J. Inorg. Biochem. 106, 117–125. CrossRef CAS Google Scholar
Qiao, X., Ma, Z.-Y., Shao, J., Bao, W.-G., Xu, J.-Y., Qiang, Z.-Y. & Lou, J.-S. (2014). Biometals, 27, 155–172. CrossRef CAS Google Scholar
Reddy, T. S., Kulhari, H., Reddy, V. G., Bansal, V., Kamal, A. & Shukla, R. (2015). Eur. J. Med. Chem. 101, 790–805. CrossRef CAS Google Scholar
Sbai, F., Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2002). Acta Cryst. E58, m337–m339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tabassum, S., Asim, A., Arjmand, F., Afzal, M. & Bagchi, V. (2012). Eur. J. Med. Chem. 58, 308–316. CrossRef CAS Google Scholar
Téllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). ARKIVOC, v, 245–275. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.