metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­{2-[(5-methyl-1H-pyrazol-3-yl-κN2)meth­yl]-1H-1,3-benzimidazole-κN3}zinc

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: karimlab09@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 27 November 2016; accepted 23 January 2017; online 27 January 2017)

The asymmetric unit of the title complex, [ZnCl2(C12H12N4)], contains two independent mol­ecules having similar conformations. The coordination about the ZnII atom is distorted tetra­hedral, with the geometrical constraints of the chelating ligand responsible for the observed distortion. Each of the independent mol­ecules forms chains in the crystal through pairs of N—H⋯Cl hydrogen bonds, using the pyrazole and benzimidazole N—H groups as donors. The first mol­ecule forms chains running parallel to the b axis, while the other mol­ecule affords the same kind of one-dimensional supra­molecular structure parallel to the a axis. The structure was refined as a two-component twin with BASF = 0.0437 (4).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzimidazole and pyrazole derivatives have shown significant anti-cancer activities when evaluated for their potential anti­proliferative activity against human tumour cells (Reddy et al., 2015[Reddy, T. S., Kulhari, H., Reddy, V. G., Bansal, V., Kamal, A. & Shukla, R. (2015). Eur. J. Med. Chem. 101, 790-805.]). The ability of the benzimidazole derivatives to form stable complexes with metal ions gives rise to a variety of metal-ligand coordination modes. Their reactions with metal salts have played an important role in the development of coordination chemistry (Téllez et al., 2008[Téllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). ARKIVOC, v, 245-275.]; Qiao et al., 2014[Qiao, X., Ma, Z.-Y., Shao, J., Bao, W.-G., Xu, J.-Y., Qiang, Z.-Y. & Lou, J.-S. (2014). Biometals, 27, 155-172.]). Several research teams investigated the coordination behaviour of benzimidazole derivatives toward transition metal ions (Constable & Steel, 1989[Constable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205-223.]). Other studies have explored the biological activity of coordination compounds containing the benzimidazole moiety (Devereux et al., 2007[Devereux, M., O'Shea, D., O'Connor, H., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). Polyhedron, 26, 4073-4084.]). Benzimidazole-based complexes have relatively high anti­bacterial and anti­fungal power (Bouchouit et al., 2016[Bouchouit, M., Said, M. E., Kara Ali, M., Bouacida, S., Merazig, H., Kacem Chaouche, H., Chibani, A., Zouchoune, B., Belfaitah, A. & Bouraiou, A. (2016). Polyhedron, 119, 248-259.]). Their zinc complexes, in addition to their anti­microbial activity, have been used in in vitro and in vivo anti­cancer studies and have been shown to have an important role in the chemotherapeutic process (Tabassum et al., 2012[Tabassum, S., Asim, A., Arjmand, F., Afzal, M. & Bagchi, V. (2012). Eur. J. Med. Chem. 58, 308-316.]) as well as exerting a significant cytotoxic activity (Li et al., 2012[Li, M. X., Zhang, L. Z., Chen, C. L., Niu, J. Y. & Ji, B. S. (2012). J. Inorg. Biochem. 106, 117-125.]).

Continuing our research in this field (Chkirate et al., 2001[Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635-636.]; Sbai et al., 2002[Sbai, F., Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2002). Acta Cryst. E58, m337-m339.]), we synthesized a zinc chloride complex having 2-[(5-methyl­pyrazol-3-yl)meth­yl]benzimidazole, obtained by the action of hydrazine on 4-acetonyl­idene-1,5-benzodiazepin-2-one (Essassi et al., 1987[Essassi, E. M., Elabbassi, M. & Fifani, J. (1987). Bull. Soc. Chim. Belg. 96, 225-228.]), as the main ligand. The asymmetric unit of the title compound consists of two independent mol­ecules with modest but distinct differences in their conformations (Fig. 1[link]). Each zinc atom adopts a distorted tetra­hedral coordination with angles at Zn ranging from 92.17 (18) to 120.88 (15)°, with the smallest angle in each mol­ecule due to the geometrical constraints of the chelating ligand.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the labelling scheme and 50% probability displacement ellipsoids.

In the crystal, the mol­ecule containing Zn1 forms chains running parallel to the b axis through a combination of N2—H2A⋯Cl1i and N4—H4A⋯Cl2ii [symmetry codes: (i) x, 1 + y, z; (ii) −x, −y, 1 − z] hydrogen bonds. That containing Zn2 similarly forms chains parallel to the a axis through a combination of N6—H6A⋯Cl4iii and N8—H8C⋯Cl3iv [symmetry codes: (iii) 1 + x, y, z; (iv) −x, 1 − y, 2 − z] hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.91 2.23 3.125 (5) 169
N4—H4A⋯Cl2ii 0.91 2.33 3.161 (5) 152
N6—H6A⋯Cl4iii 0.91 2.24 3.133 (5) 169
N8—H8C⋯Cl3iv 0.91 2.32 3.211 (5) 168
Symmetry codes: (i) x, y+1, z; (ii) -x, -y, -z+1; (iii) x+1, y, z; (iv) -x, -y+1, -z+2.
[Figure 2]
Figure 2
The packing of the title compound, viewed along the b axis, with N—H⋯Cl hydrogen bonds shown as dotted lines.
[Figure 3]
Figure 3
Detail of the N—H⋯Cl hydrogen-bonded chain containing atom Zn1, viewed along the c axis.

Synthesis and crystallization

6.25 × 10−5 mol of ZnC12 dissolved in 2.5 ml of ethanol was added to a solution of 6.25 × 10−5 mol of 2-[(5-methyl­pyrazol-3-yl)meth­yl]benzimidazole in 2.5 ml of ethanol. The mixture was warmed slightly and then left at room temperature. After 24 h, some white crystals were observed in the mother liquor. The solution was filtered and then evaporated in an oven to give single crystals with a yield of 78%.

Refinement

Crystal and refinement details are given in Table 2[link]. Analysis of 2601 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.]) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the reciprocal axis [[\overline{1}]10]. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW. The model was refined as a two-component twin with BASF = 0.0437 (4) and twin law −0.00559 1.00489 0.04907/0.99567 0.00642 0.04978/−0.01138 − 0.01717 − 1.00083. The largest difference peak is 0.6 Å from Zn2 while the largest hole is 1.1 Å from Zn2. Other smaller but noticeable difference peaks are < 1 Å from the metal atoms. We attribute these to errors in the absorption correction due to the anisotropic habit of the crystal.

Table 2
Experimental details

Crystal data
Chemical formula [ZnCl2(C12H12N4)]
Mr 348.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.7912 (3), 7.8345 (3), 23.3600 (9)
α, β, γ (°) 98.310 (1), 90.397 (2), 90.701 (2)
V3) 1410.77 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.83
Crystal size (mm) 0.18 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.46, 0.76
No. of measured, independent and observed [I > 2σ(I)] reflections 19443, 19443, 11989
Rint 0.039
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.165, 1.07
No. of reflections 19443
No. of parameters 346
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.44, −1.49
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Dichlorido{2-[(5-methyl-1H-pyrazol-3-yl-κN2)methyl]-1H-1,3-benzimidazole-κN3}zinc top
Crystal data top
[ZnCl2(C12H12N4)]Z = 4
Mr = 348.53F(000) = 704
Triclinic, P1Dx = 1.641 Mg m3
a = 7.7912 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.8345 (3) ÅCell parameters from 9898 reflections
c = 23.3600 (9) Åθ = 3.8–72.4°
α = 98.310 (1)°µ = 5.83 mm1
β = 90.397 (2)°T = 150 K
γ = 90.701 (2)°Plate, colourless
V = 1410.77 (9) Å30.18 × 0.08 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
19443 independent reflections
Radiation source: INCOATEC IµS micro-focus source11989 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 3.8°
ω scansh = 99
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 99
Tmin = 0.46, Tmax = 0.76l = 2929
19443 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.165H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.041P)2 + 3.0857P]
where P = (Fo2 + 2Fc2)/3
19443 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 2.44 e Å3
0 restraintsΔρmin = 1.49 e Å3
0 constraints
Special details top

Experimental. =?

Refinement. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.18794 (9)0.28030 (9)0.56443 (3)0.0263 (2)
Cl10.43018 (18)0.14063 (17)0.58122 (6)0.0328 (3)
Cl20.04210 (18)0.13877 (17)0.59034 (6)0.0342 (3)
H2A0.29960.90820.60620.041*
N10.1925 (6)0.5264 (6)0.60146 (18)0.0244 (9)
N20.2643 (6)0.8028 (6)0.6138 (2)0.0290 (10)
N30.2051 (7)0.3469 (6)0.4845 (2)0.0311 (11)
N40.2061 (7)0.2360 (6)0.43401 (19)0.0314 (11)
H4A0.19760.11890.43000.038*
C10.1704 (7)0.5926 (7)0.6593 (2)0.0249 (11)
C20.1125 (7)0.5128 (8)0.7054 (2)0.0307 (12)
H20.07900.39450.70020.037*
C30.1061 (8)0.6138 (9)0.7587 (3)0.0365 (14)
H30.06660.56340.79090.044*
C40.1555 (8)0.7870 (9)0.7671 (3)0.0397 (15)
H40.15060.85100.80480.048*
C50.2117 (8)0.8678 (8)0.7216 (3)0.0369 (14)
H50.24520.98600.72700.044*
C60.2166 (7)0.7667 (7)0.6677 (2)0.0272 (11)
C70.2479 (7)0.6574 (6)0.5757 (2)0.0233 (11)
C80.2897 (8)0.6581 (7)0.5139 (2)0.0320 (13)
H8A0.41110.69570.51220.038*
H8B0.21920.74830.49990.038*
C90.2672 (7)0.4968 (7)0.4713 (2)0.0249 (11)
C100.3060 (7)0.4792 (7)0.4129 (2)0.0286 (12)
H100.35130.56610.39250.034*
C110.2662 (7)0.3110 (7)0.3900 (2)0.0275 (11)
C120.2785 (9)0.2154 (8)0.3302 (2)0.0379 (14)
H12A0.16510.20930.31150.057*
H12B0.31920.09830.33190.057*
H12C0.35920.27560.30780.057*
Zn20.25313 (8)0.28490 (10)0.93401 (3)0.0254 (2)
Cl30.09426 (16)0.50253 (18)0.91272 (6)0.0309 (3)
Cl40.09997 (16)0.03585 (18)0.91796 (6)0.0320 (3)
N50.4837 (5)0.2668 (6)0.89591 (18)0.0246 (9)
N60.7549 (5)0.1970 (6)0.88353 (19)0.0258 (9)
H6A0.86040.15280.88860.031*
N70.3582 (5)0.2981 (6)1.01354 (19)0.0274 (10)
N80.2700 (6)0.3138 (7)1.06422 (19)0.0302 (10)
H8C0.16050.35331.06660.036*
C130.5233 (6)0.2698 (7)0.8382 (2)0.0244 (11)
C140.4239 (7)0.3104 (8)0.7924 (2)0.0310 (12)
H140.30730.34250.79750.037*
C150.5018 (8)0.3020 (8)0.7394 (2)0.0338 (13)
H150.43660.32800.70730.041*
C160.6741 (8)0.2564 (8)0.7312 (2)0.0351 (13)
H160.72290.25280.69390.042*
C170.7748 (7)0.2165 (8)0.7765 (3)0.0330 (13)
H170.89150.18460.77130.040*
C180.6949 (7)0.2258 (7)0.8302 (2)0.0250 (11)
C190.6252 (6)0.2239 (7)0.9216 (2)0.0226 (10)
C200.6553 (7)0.2051 (8)0.9832 (2)0.0301 (12)
H20A0.75390.28100.99720.036*
H20B0.69180.08500.98430.036*
C210.5134 (6)0.2424 (7)1.0263 (2)0.0247 (11)
C220.5243 (7)0.2259 (7)1.0847 (2)0.0283 (12)
H220.62120.19011.10460.034*
C230.3677 (7)0.2715 (7)1.1077 (2)0.0267 (11)
C240.3001 (8)0.2795 (9)1.1675 (2)0.0367 (14)
H24A0.19550.20851.16670.055*
H24B0.27380.39931.18290.055*
H24C0.38660.23601.19220.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0354 (4)0.0185 (3)0.0261 (4)0.0062 (3)0.0028 (3)0.0071 (3)
Cl10.0330 (7)0.0248 (6)0.0424 (8)0.0043 (6)0.0037 (5)0.0113 (6)
Cl20.0360 (7)0.0253 (6)0.0423 (8)0.0086 (6)0.0061 (6)0.0087 (6)
N10.030 (2)0.022 (2)0.022 (2)0.0043 (19)0.0008 (17)0.0083 (18)
N20.036 (3)0.021 (2)0.029 (2)0.003 (2)0.0015 (19)0.0030 (19)
N30.047 (3)0.022 (2)0.025 (2)0.009 (2)0.001 (2)0.0046 (19)
N40.049 (3)0.020 (2)0.024 (2)0.008 (2)0.000 (2)0.0020 (18)
C10.024 (3)0.027 (3)0.025 (3)0.003 (2)0.0003 (19)0.007 (2)
C20.035 (3)0.033 (3)0.026 (3)0.003 (3)0.004 (2)0.011 (2)
C30.039 (3)0.046 (4)0.027 (3)0.009 (3)0.006 (2)0.014 (3)
C40.043 (3)0.048 (4)0.027 (3)0.007 (3)0.002 (2)0.000 (3)
C50.043 (3)0.032 (3)0.034 (3)0.004 (3)0.001 (3)0.003 (3)
C60.027 (3)0.028 (3)0.027 (3)0.003 (2)0.001 (2)0.006 (2)
C70.026 (3)0.017 (2)0.027 (3)0.004 (2)0.001 (2)0.003 (2)
C80.048 (3)0.024 (3)0.025 (3)0.007 (3)0.001 (2)0.007 (2)
C90.030 (3)0.021 (2)0.025 (3)0.003 (2)0.004 (2)0.009 (2)
C100.034 (3)0.026 (3)0.027 (3)0.003 (2)0.003 (2)0.011 (2)
C110.030 (3)0.029 (3)0.024 (3)0.002 (2)0.000 (2)0.006 (2)
C120.047 (4)0.037 (3)0.028 (3)0.003 (3)0.002 (2)0.001 (3)
Zn20.0158 (3)0.0359 (4)0.0246 (4)0.0054 (3)0.0021 (2)0.0044 (3)
Cl30.0224 (6)0.0360 (7)0.0354 (7)0.0079 (6)0.0015 (5)0.0082 (6)
Cl40.0221 (6)0.0331 (7)0.0407 (8)0.0054 (6)0.0050 (5)0.0048 (6)
N50.019 (2)0.034 (2)0.020 (2)0.002 (2)0.0022 (16)0.0029 (18)
N60.017 (2)0.033 (2)0.028 (2)0.0031 (19)0.0013 (16)0.0050 (19)
N70.019 (2)0.039 (3)0.024 (2)0.005 (2)0.0006 (16)0.002 (2)
N80.022 (2)0.043 (3)0.025 (2)0.008 (2)0.0021 (17)0.004 (2)
C130.020 (2)0.029 (3)0.024 (3)0.001 (2)0.0021 (19)0.004 (2)
C140.026 (3)0.041 (3)0.026 (3)0.003 (3)0.005 (2)0.007 (2)
C150.036 (3)0.042 (3)0.024 (3)0.003 (3)0.005 (2)0.007 (2)
C160.039 (3)0.042 (3)0.024 (3)0.003 (3)0.004 (2)0.006 (2)
C170.025 (3)0.042 (3)0.033 (3)0.002 (3)0.006 (2)0.005 (3)
C180.023 (3)0.028 (3)0.023 (3)0.001 (2)0.0006 (19)0.002 (2)
C190.016 (2)0.026 (3)0.025 (3)0.003 (2)0.0004 (18)0.003 (2)
C200.020 (2)0.044 (3)0.027 (3)0.007 (3)0.001 (2)0.005 (2)
C210.020 (2)0.029 (3)0.024 (3)0.003 (2)0.0034 (19)0.003 (2)
C220.023 (3)0.036 (3)0.027 (3)0.006 (2)0.002 (2)0.006 (2)
C230.025 (3)0.031 (3)0.024 (3)0.002 (2)0.002 (2)0.002 (2)
C240.035 (3)0.049 (4)0.027 (3)0.008 (3)0.004 (2)0.006 (3)
Geometric parameters (Å, º) top
Zn1—N11.996 (4)Zn2—N52.007 (4)
Zn1—N32.014 (4)Zn2—N72.014 (4)
Zn1—Cl22.2291 (14)Zn2—Cl32.2304 (15)
Zn1—Cl12.2533 (16)Zn2—Cl42.2577 (16)
N1—C71.332 (6)N5—C191.322 (7)
N1—C11.388 (7)N5—C131.389 (6)
N2—C71.345 (7)N6—C191.350 (6)
N2—C61.381 (7)N6—C181.377 (7)
N2—H2A0.9088N6—H6A0.9100
N3—C91.342 (7)N7—C211.337 (7)
N3—N41.361 (6)N7—N81.364 (6)
N4—C111.340 (7)N8—C231.347 (7)
N4—H4A0.9100N8—H8C0.9100
C1—C61.392 (8)C13—C141.392 (7)
C1—C21.396 (7)C13—C181.392 (7)
C2—C31.377 (8)C14—C151.377 (8)
C2—H20.9500C14—H140.9500
C3—C41.392 (10)C15—C161.400 (9)
C3—H30.9500C15—H150.9500
C4—C51.384 (9)C16—C171.387 (9)
C4—H40.9500C16—H160.9500
C5—C61.390 (8)C17—C181.397 (7)
C5—H50.9500C17—H170.9500
C7—C81.483 (7)C19—C201.484 (7)
C8—C91.499 (8)C20—C211.504 (7)
C8—H8A0.9900C20—H20A0.9900
C8—H8B0.9900C20—H20B0.9900
C9—C101.387 (7)C21—C221.390 (7)
C10—C111.379 (8)C22—C231.368 (7)
C10—H100.9500C22—H220.9500
C11—C121.493 (7)C23—C241.489 (7)
C12—H12A0.9800C24—H24A0.9800
C12—H12B0.9800C24—H24B0.9800
C12—H12C0.9800C24—H24C0.9800
N1—Zn1—N392.17 (18)N5—Zn2—N792.34 (17)
N1—Zn1—Cl2111.84 (13)N5—Zn2—Cl3114.47 (14)
N3—Zn1—Cl2120.88 (15)N7—Zn2—Cl3119.46 (14)
N1—Zn1—Cl1112.63 (14)N5—Zn2—Cl4112.76 (14)
N3—Zn1—Cl1107.46 (15)N7—Zn2—Cl4106.71 (15)
Cl2—Zn1—Cl1110.69 (6)Cl3—Zn2—Cl4110.02 (6)
C7—N1—C1106.2 (4)C19—N5—C13106.9 (4)
C7—N1—Zn1124.3 (3)C19—N5—Zn2123.7 (3)
C1—N1—Zn1128.6 (3)C13—N5—Zn2128.8 (3)
C7—N2—C6108.4 (4)C19—N6—C18108.3 (4)
C7—N2—H2A127.0C19—N6—H6A128.6
C6—N2—H2A124.6C18—N6—H6A122.5
C9—N3—N4105.3 (4)C21—N7—N8105.1 (4)
C9—N3—Zn1126.2 (4)C21—N7—Zn2126.4 (4)
N4—N3—Zn1125.9 (3)N8—N7—Zn2125.6 (3)
C11—N4—N3112.0 (4)C23—N8—N7111.5 (4)
C11—N4—H4A119.3C23—N8—H8C127.1
N3—N4—H4A126.6N7—N8—H8C121.4
N1—C1—C6108.9 (4)N5—C13—C14131.1 (5)
N1—C1—C2130.4 (5)N5—C13—C18108.2 (4)
C6—C1—C2120.7 (5)C14—C13—C18120.8 (5)
C3—C2—C1116.8 (6)C15—C14—C13117.2 (5)
C3—C2—H2121.6C15—C14—H14121.4
C1—C2—H2121.6C13—C14—H14121.4
C2—C3—C4122.3 (5)C14—C15—C16122.1 (5)
C2—C3—H3118.8C14—C15—H15118.9
C4—C3—H3118.8C16—C15—H15118.9
C5—C4—C3121.3 (6)C17—C16—C15121.2 (5)
C5—C4—H4119.3C17—C16—H16119.4
C3—C4—H4119.3C15—C16—H16119.4
C4—C5—C6116.5 (6)C16—C17—C18116.3 (5)
C4—C5—H5121.8C16—C17—H17121.9
C6—C5—H5121.8C18—C17—H17121.9
N2—C6—C5132.3 (5)N6—C18—C13105.8 (4)
N2—C6—C1105.3 (5)N6—C18—C17131.8 (5)
C5—C6—C1122.4 (5)C13—C18—C17122.4 (5)
N1—C7—N2111.1 (5)N5—C19—N6110.8 (4)
N1—C7—C8128.6 (5)N5—C19—C20129.4 (4)
N2—C7—C8120.3 (5)N6—C19—C20119.7 (4)
C7—C8—C9120.1 (5)C19—C20—C21119.9 (4)
C7—C8—H8A107.3C19—C20—H20A107.3
C9—C8—H8A107.3C21—C20—H20A107.3
C7—C8—H8B107.3C19—C20—H20B107.3
C9—C8—H8B107.3C21—C20—H20B107.3
H8A—C8—H8B106.9H20A—C20—H20B106.9
N3—C9—C10109.9 (5)N7—C21—C22110.4 (4)
N3—C9—C8124.3 (5)N7—C21—C20124.2 (5)
C10—C9—C8125.7 (5)C22—C21—C20125.4 (5)
C11—C10—C9106.6 (5)C23—C22—C21106.3 (5)
C11—C10—H10126.7C23—C22—H22126.9
C9—C10—H10126.7C21—C22—H22126.9
N4—C11—C10106.1 (5)N8—C23—C22106.7 (5)
N4—C11—C12121.9 (5)N8—C23—C24121.5 (5)
C10—C11—C12131.9 (5)C22—C23—C24131.8 (5)
C11—C12—H12A109.5C23—C24—H24A109.5
C11—C12—H12B109.5C23—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
C11—C12—H12C109.5C23—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.912.233.125 (5)169
N4—H4A···Cl2ii0.912.333.161 (5)152
N6—H6A···Cl4iii0.912.243.133 (5)169
N8—H8C···Cl3iv0.912.323.211 (5)168
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y+1, z+2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBouchouit, M., Said, M. E., Kara Ali, M., Bouacida, S., Merazig, H., Kacem Chaouche, H., Chibani, A., Zouchoune, B., Belfaitah, A. & Bouraiou, A. (2016). Polyhedron, 119, 248–259.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636.  CAS Google Scholar
First citationConstable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205–223.  CAS Google Scholar
First citationDevereux, M., O'Shea, D., O'Connor, H., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). Polyhedron, 26, 4073–4084.  CrossRef CAS Google Scholar
First citationEssassi, E. M., Elabbassi, M. & Fifani, J. (1987). Bull. Soc. Chim. Belg. 96, 225–228.  CrossRef CAS Google Scholar
First citationLi, M. X., Zhang, L. Z., Chen, C. L., Niu, J. Y. & Ji, B. S. (2012). J. Inorg. Biochem. 106, 117–125.  CrossRef CAS Google Scholar
First citationQiao, X., Ma, Z.-Y., Shao, J., Bao, W.-G., Xu, J.-Y., Qiang, Z.-Y. & Lou, J.-S. (2014). Biometals, 27, 155–172.  CrossRef CAS Google Scholar
First citationReddy, T. S., Kulhari, H., Reddy, V. G., Bansal, V., Kamal, A. & Shukla, R. (2015). Eur. J. Med. Chem. 101, 790–805.  CrossRef CAS Google Scholar
First citationSbai, F., Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2002). Acta Cryst. E58, m337–m339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTabassum, S., Asim, A., Arjmand, F., Afzal, M. & Bagchi, V. (2012). Eur. J. Med. Chem. 58, 308–316.  CrossRef CAS Google Scholar
First citationTéllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). ARKIVOC, v, 245–275.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds