metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2-Benzoyl-1-phenyl­ethenolato-κ2O,O′)bis­­[2-(1-phenyl-1H-benzimidazol-2-yl)phenyl-κC1]iridium(III) di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation, and bDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
*Correspondence e-mail: bezzubov@igic.ras.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 November 2016; accepted 1 December 2016; online 9 December 2016)

We present here synthesis and crystal structure of a neutral IrIII complex, [Ir(C19H13N2)2(C15H11O2)]·2CH2Cl2 or [Ir(C^N)2O^O]·2CH2Cl2, where C^N is 1,2-diphenyl-1H-benzimidazole and O^O is 2-benzoyl-1-phenyl­ethenolate. The coordination sphere of the IrIII atom, located on a twofold rotation axis, is that of a slighlty distorted C2N2O2 octa­hedron, with the N atoms in a trans configuration. In the crystal, complex mol­ecules assemble through weak C—H⋯π inter­actions in the range 2.699 (3)–2.892 (3) Å. The solvent CH2Cl2 molecules reside in channels aligned along the a axis and are connected to the complex molecules by C—H⋯O interactions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclo­metalated IrIII complexes with benzimidazole derivatives demonstrate unique optical properties, which have been intensively used in creating promising IrIII-based luminescent and anti­tumor agents, as well as effective photosensitizers (Huang et al., 2004[Huang, W. S., Lin, J. T., Chien, C. H., Tao, Y. T., Sun, S. S. & Wen, Y. S. (2004). Chem. Mater. 16, 2480-2488.]; Yellol et al., 2015[Yellol, G. S., Yellol, J. G., Kenche, V. B., Liu, X. M., Barnham, K. J., Donaire, A., Janiak, C. & Ruiz, J. (2015). Inorg. Chem. 54, 470-475.]). The title complex was synthesized in this context. Its mol­ecular structure exhibits point-group symmetry C2, with the IrIII ion situated on the twofold rotation axis. The central ion shows a distorted octa­hedral C2N2O2 coordination set formed by two bidentate C^N ligands and one bidentate O^O ligand (Fig. 1[link]). The N atoms adopt a trans configuration other in this octa­hedron. The Ir—C [1.999 (4) Å] and Ir—N [2.041 (3) Å] bond lengths are significantly shorter than the Ir—O bond length [2.176 (3) Å], which is due to the trans effect exerted by the C-donor atoms of the coordinating C^N ligands. The dihedral angle between the planes of the benzimidazolyl and phenyl units of the C^N ligand is 2.6 (3)°, whereas the plane of the N-phenyl ring is inclined to the 2-phenyl-1H-benzimidazole plane by 80.3 (3)°. There are large channels in the crystal structure passing parallel to the a axis, which are filled by solvent CH2Cl2 mol­ecules. These mol­ecules form weak C—H⋯O hydrogen bonds with O atoms of the IrIII complex mol­ecules with an almost ideal D—H⋯A angle of 179° (Table 1[link]). Other inter­molecular inter­actions between complex mol­ecules include weak C—H⋯π inter­actions [range 2.699 (3)–2.892 (3) Å] involving phenyl H atoms and the centroids of the benzimidazole rings. The packing of the mol­ecules is displayed in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯O1i 0.99 2.39 3.377 (6) 179
Symmetry code: (i) [-x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of [Ir(C^N)2(O^O)]. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. The suffix A in atom labels indicates the symmetry operator (−x, −y, z). The solvent mol­ecule is not shown.
[Figure 2]
Figure 2
The crystal packing of the title complex.

The structures of similar benzimidazole-based IrIII complexes have been reported by Bezzubov et al. (2014[Bezzubov, S. I., Doljenko, V. D., Troyanov, S. I. & Kiselev, Y. M. (2014). Inorg. Chim. Acta, 415, 22-30.], 2016[Bezzubov, S. I., Kiselev, Y. M., Churakov, A. V., Kozyukhin, S. A., Sadovnikov, A. A., Grinberg, V. A., Emets, V. V. & Doljenko, V. D. (2016). Eur. J. Inorg. Chem. pp. 347-354.]).

Synthesis and crystallization

The title complex was synthesized by a two-step procedure. (i) IrCl3·3H2O (80 mg, 0.25 mmol) and 1,2-di­phenyl­benz­imid­azole (259 mg, 0.96 mmol) in a mixture of 2-eth­oxy­ethanol and water (3:1 v/v, 10 ml) were refluxed for 20 h under an argon atmosphere and cooled to room temperature. Distilled water (3 ml) was added and the precipitate which formed was collected by filtration, washed several times with water, ethanol and acetone, and dried in vacuo for 12 h. (ii) The crude μ-chlorido-bridged iridium dimer (70 mg, 0.046 mmol), di­benzoyl­methane (20.6 mg, 0.092 mmol) and Na2CO3 (50 mg, 0.47 mmol) in 2-eth­oxy­ethanol (5 ml) were refluxed under an argon atmosphere for 12 h and cooled to room temperature. Distilled water (2 ml) was added and the precipitate which formed was collected by filtration, washed several times with water and dried in vacuo. The orange solid was extracted with CH2Cl2 and the extract was purified by column chromatography (SiO2, CH2Cl2/hexane 1:1 v/v) (yield: 47 mg, 54%). Single crystals of the desired complex were grown by slow evaporation of the solvent from a solution of the complex in CH2Cl2.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise.

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C19H13N2)2(C15H11O2)]·2CH2Cl2
Mr 1123.92
Crystal system, space group Orthorhombic, Aba2
Temperature (K) 150
a, b, c (Å) 13.9159 (7), 25.5352 (12), 13.0898 (6)
V3) 4651.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.15
Crystal size (mm) 0.40 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 21901, 6169, 5029
Rint 0.020
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.043, 1.07
No. of reflections 6169
No. of parameters 299
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.07, −0.46
Absolute structure Flack x determined using 2201 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.007 (3)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(2-Benzoyl-1-phenylethenolato-κ2O,O')bis[2-(1-phenyl-1H-benzimidazol-2-yl)phenyl-κC1]iridium(III) dichloromethane disolvate top
Crystal data top
[Ir(C19H13N2)2(C15H11O2)]·2CH2Cl2Dx = 1.605 Mg m3
Mr = 1123.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Aba2Cell parameters from 9873 reflections
a = 13.9159 (7) Åθ = 2.2–30.5°
b = 25.5352 (12) ŵ = 3.15 mm1
c = 13.0898 (6) ÅT = 150 K
V = 4651.4 (4) Å3Plate, orange
Z = 40.40 × 0.25 × 0.15 mm
F(000) = 2240
Data collection top
Bruker SMART APEXII
diffractometer
5029 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
k = 3434
21901 measured reflectionsl = 1717
6169 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0163P)2 + 6.3016P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.07 e Å3
6169 reflectionsΔρmin = 0.46 e Å3
299 parametersAbsolute structure: Flack x determined using 2201 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.007 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.00000.00000.87622 (4)0.01596 (4)
O10.0422 (2)0.05472 (12)0.7569 (2)0.0202 (6)
N10.12555 (19)0.04069 (10)0.8901 (2)0.0173 (6)
N20.2133 (2)0.10159 (12)0.9688 (2)0.0202 (6)
C10.0377 (3)0.05237 (16)0.9825 (3)0.0169 (8)
C20.1284 (3)0.06017 (15)1.0264 (3)0.0206 (7)
H6A0.17990.03781.00700.025*
C30.1456 (3)0.09984 (15)1.0979 (3)0.0250 (8)
H5A0.20840.10441.12500.030*
C40.0721 (3)0.13256 (18)1.1296 (3)0.0261 (10)
H4A0.08390.15861.17980.031*
C50.0197 (3)0.12704 (16)1.0873 (3)0.0238 (8)
H3A0.07040.14961.10760.029*
C60.0357 (3)0.08776 (15)1.0147 (3)0.0199 (7)
C70.1252 (3)0.07847 (14)0.9607 (3)0.0187 (7)
C80.2463 (3)0.14125 (14)1.0383 (3)0.0209 (7)
C90.2713 (3)0.12733 (17)1.1363 (3)0.0312 (10)
H15A0.26270.09231.15910.037*
C100.3093 (3)0.16477 (19)1.2019 (3)0.0385 (11)
H16A0.32610.15561.26990.046*
C110.3226 (3)0.21529 (18)1.1675 (4)0.0346 (10)
H17A0.34920.24091.21190.042*
C120.2977 (4)0.22885 (18)1.0693 (4)0.0403 (11)
H19A0.30650.26381.04640.048*
C130.2600 (3)0.19165 (17)1.0038 (3)0.0360 (10)
H18A0.24370.20080.93560.043*
C140.2745 (3)0.07636 (14)0.8998 (2)0.0208 (8)
C150.3710 (2)0.08408 (13)0.8788 (4)0.0246 (6)
H12A0.40770.11020.91270.029*
C160.4109 (3)0.05164 (17)0.8058 (3)0.0271 (8)
H11A0.47690.05550.78890.033*
C170.3568 (3)0.01333 (15)0.7562 (3)0.0244 (8)
H10A0.38700.00790.70600.029*
C180.2600 (3)0.00515 (14)0.7776 (3)0.0219 (7)
H9A0.22370.02130.74410.026*
C190.2191 (2)0.03793 (14)0.8509 (2)0.0179 (7)
C200.00000.00000.6161 (4)0.0263 (11)
H21A0.00000.00000.54350.032*
C210.0349 (3)0.04551 (14)0.6622 (3)0.0194 (7)
C220.0652 (3)0.08839 (15)0.5905 (3)0.0213 (7)
C230.0429 (3)0.13971 (18)0.6134 (3)0.0290 (10)
H24A0.01130.14780.67590.035*
C240.0662 (4)0.17976 (18)0.5457 (4)0.0381 (11)
H25A0.04930.21490.56140.046*
C250.1137 (3)0.16867 (17)0.4558 (3)0.0362 (10)
H26A0.13010.19610.41000.043*
C260.1373 (3)0.11718 (17)0.4325 (3)0.0294 (9)
H27A0.17080.10940.37110.035*
C270.1123 (3)0.07730 (16)0.4986 (3)0.0243 (8)
H28A0.12720.04210.48150.029*
C310.1018 (3)0.32965 (17)0.3649 (4)0.0386 (11)
H31A0.08380.36340.33310.046*
H31B0.12830.33700.43360.046*
Cl10.00094 (11)0.28980 (5)0.3765 (3)0.0586 (3)
Cl20.18966 (10)0.29873 (7)0.28987 (11)0.0620 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01740 (7)0.01518 (7)0.01531 (6)0.00053 (8)0.0000.000
O10.0239 (16)0.0183 (16)0.0183 (13)0.0011 (12)0.0007 (12)0.0014 (12)
N10.0189 (12)0.0176 (13)0.0153 (17)0.0023 (10)0.0004 (11)0.0010 (12)
N20.0207 (15)0.0215 (15)0.0184 (14)0.0016 (12)0.0006 (12)0.0039 (12)
C10.023 (2)0.015 (2)0.0127 (16)0.0016 (16)0.0002 (15)0.0030 (14)
C20.0211 (17)0.0209 (18)0.0200 (17)0.0011 (14)0.0008 (14)0.0009 (14)
C30.0244 (19)0.026 (2)0.0248 (19)0.0071 (15)0.0053 (15)0.0015 (15)
C40.029 (2)0.029 (2)0.0205 (18)0.0084 (17)0.0044 (16)0.0054 (16)
C50.025 (2)0.025 (2)0.0208 (17)0.0004 (14)0.0028 (14)0.0046 (15)
C60.0203 (16)0.0210 (19)0.0183 (17)0.0030 (15)0.0001 (14)0.0001 (14)
C70.0212 (17)0.0172 (17)0.0177 (17)0.0007 (13)0.0001 (13)0.0006 (14)
C80.0178 (16)0.0234 (18)0.0214 (17)0.0011 (14)0.0006 (13)0.0050 (15)
C90.039 (3)0.030 (2)0.025 (2)0.0131 (17)0.0054 (19)0.0043 (17)
C100.045 (3)0.050 (3)0.0197 (19)0.016 (2)0.0026 (18)0.0027 (19)
C110.035 (2)0.034 (2)0.035 (2)0.0056 (18)0.0003 (19)0.0153 (19)
C120.056 (3)0.019 (2)0.047 (3)0.003 (2)0.011 (2)0.0046 (19)
C130.048 (3)0.025 (2)0.034 (2)0.0034 (19)0.016 (2)0.0020 (18)
C140.0225 (17)0.0207 (17)0.019 (2)0.0036 (13)0.0003 (12)0.0006 (12)
C150.0214 (15)0.0263 (16)0.0261 (16)0.0036 (12)0.003 (2)0.003 (2)
C160.0193 (18)0.033 (2)0.029 (2)0.0011 (16)0.0023 (15)0.0007 (17)
C170.0247 (18)0.026 (2)0.0222 (17)0.0053 (14)0.0022 (15)0.0028 (14)
C180.0244 (17)0.0218 (19)0.0195 (15)0.0015 (15)0.0016 (13)0.0014 (15)
C190.0184 (16)0.0188 (16)0.0166 (17)0.0016 (13)0.0006 (11)0.0004 (12)
C200.034 (3)0.028 (3)0.017 (2)0.008 (3)0.0000.000
C210.0167 (15)0.0215 (18)0.0202 (16)0.0004 (14)0.0001 (14)0.0021 (14)
C220.0217 (17)0.0227 (19)0.0196 (16)0.0022 (14)0.0011 (14)0.0035 (14)
C230.035 (2)0.026 (2)0.026 (2)0.0007 (19)0.0047 (19)0.0026 (18)
C240.055 (3)0.021 (2)0.038 (2)0.0029 (19)0.007 (2)0.0073 (18)
C250.045 (3)0.028 (2)0.036 (2)0.0024 (19)0.006 (2)0.0135 (19)
C260.032 (2)0.034 (2)0.0227 (19)0.0030 (18)0.0063 (16)0.0050 (16)
C270.0248 (19)0.0247 (19)0.0235 (19)0.0007 (15)0.0011 (15)0.0016 (15)
C310.049 (2)0.033 (2)0.034 (3)0.0042 (17)0.008 (2)0.007 (2)
Cl10.0683 (7)0.0556 (6)0.0518 (6)0.0168 (7)0.0125 (7)0.0098 (18)
Cl20.0531 (8)0.0838 (11)0.0490 (7)0.0266 (8)0.0111 (6)0.0246 (7)
Geometric parameters (Å, º) top
Ir1—C1i1.999 (4)C12—H19A0.9500
Ir1—C11.999 (4)C13—H18A0.9500
Ir1—N1i2.041 (3)C14—C151.386 (5)
Ir1—N12.041 (3)C14—C191.402 (5)
Ir1—O1i2.176 (3)C15—C161.381 (6)
Ir1—O12.176 (3)C15—H12A0.9500
O1—C211.267 (5)C16—C171.395 (6)
N1—C71.337 (4)C16—H11A0.9500
N1—C191.400 (4)C17—C181.392 (5)
N2—C71.365 (5)C17—H10A0.9500
N2—C141.398 (4)C18—C191.395 (5)
N2—C81.436 (5)C18—H9A0.9500
C1—C21.402 (6)C20—C21i1.397 (4)
C1—C61.427 (6)C20—C211.397 (4)
C2—C31.400 (5)C20—H21A0.9500
C2—H6A0.9500C21—C221.502 (5)
C3—C41.385 (6)C22—C231.380 (6)
C3—H5A0.9500C22—C271.400 (5)
C4—C51.399 (5)C23—C241.392 (6)
C4—H4A0.9500C23—H24A0.9500
C5—C61.400 (5)C24—C251.379 (6)
C5—H3A0.9500C24—H25A0.9500
C6—C71.451 (5)C25—C261.389 (6)
C8—C91.377 (5)C25—H26A0.9500
C8—C131.377 (5)C26—C271.380 (5)
C9—C101.389 (6)C26—H27A0.9500
C9—H15A0.9500C27—H28A0.9500
C10—C111.379 (7)C31—Cl21.755 (5)
C10—H16A0.9500C31—Cl11.762 (5)
C11—C121.375 (7)C31—H31A0.9900
C11—H17A0.9500C31—H31B0.9900
C12—C131.383 (6)
C1i—Ir1—C191.9 (2)C11—C12—C13120.1 (4)
C1i—Ir1—N1i79.76 (15)C11—C12—H19A119.9
C1—Ir1—N1i93.11 (15)C13—C12—H19A119.9
C1i—Ir1—N193.11 (15)C8—C13—C12119.4 (4)
C1—Ir1—N179.76 (15)C8—C13—H18A120.3
N1i—Ir1—N1169.81 (18)C12—C13—H18A120.3
C1i—Ir1—O1i177.96 (17)C15—C14—N2130.7 (4)
C1—Ir1—O1i89.94 (10)C15—C14—C19122.8 (3)
N1i—Ir1—O1i99.17 (12)N2—C14—C19106.4 (3)
N1—Ir1—O1i88.17 (12)C16—C15—C14116.2 (4)
C1i—Ir1—O189.94 (10)C16—C15—H12A121.9
C1—Ir1—O1177.96 (17)C14—C15—H12A121.9
N1i—Ir1—O188.17 (12)C15—C16—C17121.7 (4)
N1—Ir1—O199.17 (12)C15—C16—H11A119.1
O1i—Ir1—O188.29 (16)C17—C16—H11A119.1
C21—O1—Ir1124.2 (3)C18—C17—C16122.3 (4)
C7—N1—C19107.0 (3)C18—C17—H10A118.9
C7—N1—Ir1115.2 (2)C16—C17—H10A118.9
C19—N1—Ir1137.5 (2)C17—C18—C19116.3 (3)
C7—N2—C14107.3 (3)C17—C18—H9A121.8
C7—N2—C8129.8 (3)C19—C18—H9A121.8
C14—N2—C8122.6 (3)C18—C19—N1131.4 (3)
C2—C1—C6115.7 (4)C18—C19—C14120.6 (3)
C2—C1—Ir1128.1 (3)N1—C19—C14108.0 (3)
C6—C1—Ir1116.2 (3)C21i—C20—C21128.8 (5)
C3—C2—C1122.1 (4)C21i—C20—H21A115.6
C3—C2—H6A119.0C21—C20—H21A115.6
C1—C2—H6A119.0O1—C21—C20127.3 (4)
C4—C3—C2120.7 (4)O1—C21—C22117.0 (3)
C4—C3—H5A119.6C20—C21—C22115.8 (3)
C2—C3—H5A119.6C23—C22—C27119.0 (4)
C3—C4—C5119.7 (4)C23—C22—C21119.5 (4)
C3—C4—H4A120.2C27—C22—C21121.4 (3)
C5—C4—H4A120.2C22—C23—C24120.4 (4)
C4—C5—C6119.1 (4)C22—C23—H24A119.8
C4—C5—H3A120.4C24—C23—H24A119.8
C6—C5—H3A120.4C25—C24—C23120.3 (4)
C5—C6—C1122.7 (4)C25—C24—H25A119.9
C5—C6—C7125.8 (4)C23—C24—H25A119.9
C1—C6—C7111.5 (3)C24—C25—C26119.7 (4)
N1—C7—N2111.2 (3)C24—C25—H26A120.2
N1—C7—C6117.3 (3)C26—C25—H26A120.2
N2—C7—C6131.5 (3)C27—C26—C25120.1 (4)
C9—C8—C13120.8 (4)C27—C26—H27A119.9
C9—C8—N2119.3 (3)C25—C26—H27A119.9
C13—C8—N2119.7 (3)C26—C27—C22120.5 (4)
C8—C9—C10119.6 (4)C26—C27—H28A119.8
C8—C9—H15A120.2C22—C27—H28A119.8
C10—C9—H15A120.2Cl2—C31—Cl1110.7 (3)
C11—C10—C9119.6 (4)Cl2—C31—H31A109.5
C11—C10—H16A120.2Cl1—C31—H31A109.5
C9—C10—H16A120.2Cl2—C31—H31B109.5
C12—C11—C10120.5 (4)Cl1—C31—H31B109.5
C12—C11—H17A119.8H31A—C31—H31B108.1
C10—C11—H17A119.8
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31A···O1ii0.992.393.377 (6)179
Symmetry code: (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by RFBR (project No. 16-33-00604 `mol-a').

References

First citationBezzubov, S. I., Doljenko, V. D., Troyanov, S. I. & Kiselev, Y. M. (2014). Inorg. Chim. Acta, 415, 22–30.  CSD CrossRef CAS Google Scholar
First citationBezzubov, S. I., Kiselev, Y. M., Churakov, A. V., Kozyukhin, S. A., Sadovnikov, A. A., Grinberg, V. A., Emets, V. V. & Doljenko, V. D. (2016). Eur. J. Inorg. Chem. pp. 347–354.  CSD CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, W. S., Lin, J. T., Chien, C. H., Tao, Y. T., Sun, S. S. & Wen, Y. S. (2004). Chem. Mater. 16, 2480–2488.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYellol, G. S., Yellol, J. G., Kenche, V. B., Liu, X. M., Barnham, K. J., Donaire, A., Janiak, C. & Ruiz, J. (2015). Inorg. Chem. 54, 470–475.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds