organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridin-3-yl)acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
*Correspondence e-mail: younes.ouzidan@usmba.ac.ma

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 December 2016; accepted 15 December 2016; online 20 December 2016)

The title imidazo [4,5-b] pyridine derivative, C16H14BrN3O2, crystallizes with two independent mol­ecules (1 and 2) in the asymmetric unit. In mol­ecule 1, the pendant phenyl ring is inclined to the imidazo[4,5-b]pyridine core by 43.10 (4)° while in mol­ecule 2 the corresponding angle is 49.43 (4)°. The two mol­ecules differ primarily in the conformations of the ester substituents. In the crystal, mol­ecules are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming sheets parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazo[4,5-b]pyridines are an important class of heterocyclic rings, considered as analogue of purine, widely studied owing to their broad biological activities. For example, they are known for their anti­cancer activity (Dash et al., 2008[Dash, N., Chipem, F. A. S., Swaminathan, R. & Krishnamoorthy, G. (2008). Chem. Phys. Lett. 460, 119-124.]) and anti­bacterial (Capelli et al., 2006[Cappelli, A., la Pericot Mohr, G., Giuliani, G., Galeazzi, S., Anzini, M., Mennuni, L., Ferrari, F., Makovec, F., Kleinrath, E. M., Langer, T., Valoti, M., Giorgi, G. & Vomero, S. (2006). J. Med. Chem. 49, 6451-6464.]), anti­mitotic (Temple, 1990[Temple, C. (1990). J. Med. Chem. 33, 656-661.]) and tuberculostatic (Bukowski & Janowiec, 1989[Bukowski, L. & Janowiec, M. (1989). Pharmazie, 33, 267-269.]) properties. In a previous study, we reported the synthesis of ethyl 2-(6-bromo-2-phenyl-1H-imidazo[4,5-b]-pyridin-1-yl)acetate (Hjouji et al., 2016[Hjouji, M. Y., Kandri Rodi, Y., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160771.]). The present study is extended to the synthesis of the ethyl 2-(6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridin-3-yl)acetate regioisomer, by the action of ethyl 2-bromo­acetate on 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine under the same conditions.

The asymmetric unit of the title compound, contains two independent mol­ecules (1 and 2), which differ primarily in the conformations of the ester substituents (Figs. 1[link] and 2[link]). The bicyclic imidazo[4,5-b]pyridine core of mol­ecule 1 is planar to within 0.012 (1) Å, while that in mol­ecule 2 is planar to within 0.020 (1) Å. In mol­ecule 1, the pendant phenyl ring is inclined to the imidazo[4,5-b]pyridine core by 43.10 (4)° while in mol­ecule 2 the corresponding angle is 49.43 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules of the title compound, with the atom labelling and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
An AutoMolFit (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) view of mol­ecule 2 (red) to mol­ecule 1 (black).

In the crystal, mol­ecules are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming sheets parallel to the ab plane (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3 0.95 2.55 3.450 (2) 158
C13—H13A⋯N5 0.99 2.52 3.105 (2) 117
C15—H15A⋯O2i 0.99 2.46 3.418 (2) 164
C24—H24⋯O1ii 0.95 2.46 3.142 (2) 129
C28—H28⋯O3 0.95 2.53 3.400 (2) 152
C31—H31A⋯O4iii 0.99 2.54 3.379 (2) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only the H atoms involved in these inter­actions have been included.

Synthesis and crystallization

To a solution of 6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridine (0.30 g, 1.1 mmol), potassium carbonate (0.20 g, 1.42 mmol) and tetra-n-butyl­ammonium bromide 0.035 g (0,11 mmol) in DMF (15 ml) was added ethyl 2-bromo­acetate (0.14 ml, 1.30 mmol). The mixture was stirred at room temperature for 12 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/3) as eluent. Crystals were isolated when the solvent was allowed to evaporate (yield 43%)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H14BrN3O2
Mr 360.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 21.1444 (14), 7.6970 (5), 21.2671 (14)
β (°) 118.073 (1)
V3) 3054.0 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.70
Crystal size (mm) 0.36 × 0.24 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.52, 0.68
No. of measured, independent and observed [I > 2σ(I)] reflections 56392, 7958, 6411
Rint 0.037
(sin θ/λ)max−1) 0.678
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.04
No. of reflections 7958
No. of parameters 399
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.64
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-(6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridin-3-yl)acetate top
Crystal data top
C16H14BrN3O2F(000) = 1456
Mr = 360.21Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.1444 (14) ÅCell parameters from 9951 reflections
b = 7.6970 (5) Åθ = 2.2–28.7°
c = 21.2671 (14) ŵ = 2.70 mm1
β = 118.073 (1)°T = 150 K
V = 3054.0 (3) Å3Block, colourless
Z = 80.36 × 0.24 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7958 independent reflections
Radiation source: fine-focus sealed tube6411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.3333 pixels mm-1θmax = 28.8°, θmin = 1.9°
φ and ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.52, Tmax = 0.68l = 2828
56392 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.9304P]
where P = (Fo2 + 2Fc2)/3
7958 reflections(Δ/σ)max = 0.002
399 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.64 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03279 (2)0.34558 (3)0.09058 (2)0.03671 (6)
O10.38784 (7)0.20747 (17)0.19067 (9)0.0438 (4)
O20.45553 (6)0.44806 (16)0.22466 (7)0.0314 (3)
N10.23565 (8)0.43626 (19)0.07421 (8)0.0276 (3)
N20.17346 (7)0.29001 (18)0.19504 (7)0.0230 (3)
N30.27629 (7)0.38736 (18)0.19942 (8)0.0232 (3)
C10.22566 (9)0.3863 (2)0.12858 (9)0.0229 (3)
C20.17676 (10)0.4227 (2)0.01076 (10)0.0297 (4)
H20.17960.45710.03070.036*
C30.11122 (10)0.3601 (2)0.00294 (9)0.0267 (3)
C40.10175 (9)0.3103 (2)0.06064 (9)0.0252 (3)
H40.05720.26890.05540.030*
C50.16211 (9)0.3251 (2)0.12659 (9)0.0222 (3)
C60.24160 (9)0.3287 (2)0.23677 (9)0.0224 (3)
C70.27518 (9)0.3096 (2)0.31450 (9)0.0247 (3)
C80.23533 (10)0.3596 (2)0.34853 (10)0.0270 (4)
H80.18970.41230.32190.032*
C90.26230 (11)0.3323 (2)0.42127 (10)0.0342 (4)
H90.23500.36630.44410.041*
C100.32864 (12)0.2560 (3)0.46039 (10)0.0409 (5)
H100.34670.23650.51000.049*
C110.36882 (11)0.2077 (3)0.42727 (11)0.0430 (5)
H110.41470.15630.45440.052*
C120.34243 (10)0.2341 (2)0.35440 (10)0.0331 (4)
H120.37020.20080.33190.040*
C130.34645 (9)0.4662 (2)0.22469 (10)0.0270 (4)
H13A0.36740.48750.27660.032*
H13B0.34090.58000.20100.032*
C140.39738 (9)0.3549 (2)0.21071 (9)0.0236 (3)
C150.51121 (9)0.3649 (2)0.21269 (11)0.0322 (4)
H15A0.51190.23870.22190.039*
H15B0.55860.41330.24630.039*
C160.49801 (13)0.3934 (4)0.13880 (13)0.0544 (6)
H16A0.53670.34020.13240.082*
H16B0.49640.51850.12940.082*
H16C0.45210.34060.10550.082*
Br20.44606 (2)0.61495 (3)0.59602 (2)0.04201 (7)
O30.09890 (6)0.65678 (15)0.26396 (7)0.0287 (3)
O40.04948 (6)0.87883 (14)0.29441 (6)0.0232 (2)
N40.25938 (8)0.82785 (18)0.43947 (8)0.0258 (3)
N50.32621 (7)0.75523 (18)0.31553 (7)0.0224 (3)
N60.22554 (7)0.85498 (17)0.31455 (7)0.0204 (3)
C170.27181 (8)0.8110 (2)0.38410 (9)0.0208 (3)
C180.31420 (10)0.7737 (2)0.50126 (9)0.0283 (4)
H180.30980.78400.54350.034*
C190.37712 (9)0.7032 (2)0.50626 (9)0.0274 (4)
C200.38933 (9)0.6896 (2)0.44782 (9)0.0249 (3)
H200.43250.64300.45130.030*
C210.33398 (8)0.7488 (2)0.38388 (8)0.0214 (3)
C220.26099 (8)0.8176 (2)0.27574 (8)0.0199 (3)
C230.22979 (8)0.84618 (19)0.19843 (9)0.0203 (3)
C240.27120 (9)0.9308 (2)0.17252 (9)0.0228 (3)
H240.31800.96970.20480.027*
C250.24465 (9)0.9582 (2)0.10030 (9)0.0270 (4)
H250.27281.01770.08320.032*
C260.17650 (10)0.8986 (2)0.05261 (10)0.0304 (4)
H260.15830.91650.00290.036*
C270.13536 (10)0.8131 (2)0.07791 (10)0.0313 (4)
H270.08890.77220.04530.038*
C280.16135 (9)0.7866 (2)0.15052 (9)0.0266 (3)
H280.13280.72840.16750.032*
C290.15676 (8)0.9377 (2)0.29260 (9)0.0213 (3)
H29A0.14251.00140.24750.026*
H29B0.16101.02290.32930.026*
C300.09915 (8)0.8050 (2)0.28196 (8)0.0202 (3)
C310.00920 (8)0.7680 (2)0.28889 (9)0.0246 (3)
H31A0.02620.69380.24590.029*
H31B0.04970.84130.28400.029*
C320.01568 (10)0.6550 (2)0.35418 (10)0.0322 (4)
H32A0.02550.59360.35300.048*
H32B0.03800.72770.39700.048*
H32C0.05070.57040.35500.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04049 (11)0.04320 (12)0.02440 (10)0.00655 (8)0.01359 (8)0.00355 (7)
O10.0337 (7)0.0225 (6)0.0865 (12)0.0059 (5)0.0375 (8)0.0132 (7)
O20.0226 (6)0.0299 (6)0.0477 (8)0.0078 (5)0.0215 (6)0.0128 (6)
N10.0310 (8)0.0275 (7)0.0340 (8)0.0030 (6)0.0233 (7)0.0006 (6)
N20.0227 (7)0.0250 (7)0.0244 (7)0.0007 (5)0.0137 (6)0.0001 (5)
N30.0200 (7)0.0241 (7)0.0306 (7)0.0019 (5)0.0161 (6)0.0026 (6)
C10.0237 (8)0.0211 (7)0.0306 (9)0.0005 (6)0.0182 (7)0.0015 (6)
C20.0386 (10)0.0299 (9)0.0309 (9)0.0019 (7)0.0249 (8)0.0007 (7)
C30.0300 (9)0.0263 (8)0.0258 (9)0.0000 (7)0.0148 (7)0.0008 (6)
C40.0243 (8)0.0276 (8)0.0279 (9)0.0014 (6)0.0157 (7)0.0014 (7)
C50.0230 (8)0.0217 (7)0.0274 (8)0.0007 (6)0.0166 (7)0.0011 (6)
C60.0230 (8)0.0202 (7)0.0276 (8)0.0011 (6)0.0148 (7)0.0014 (6)
C70.0243 (8)0.0204 (7)0.0278 (9)0.0044 (6)0.0110 (7)0.0024 (6)
C80.0281 (9)0.0259 (8)0.0291 (9)0.0049 (7)0.0152 (7)0.0018 (7)
C90.0435 (11)0.0326 (9)0.0291 (9)0.0115 (8)0.0192 (9)0.0046 (7)
C100.0494 (12)0.0365 (11)0.0261 (10)0.0097 (9)0.0088 (9)0.0014 (8)
C110.0353 (11)0.0358 (10)0.0370 (11)0.0012 (8)0.0004 (9)0.0027 (8)
C120.0273 (9)0.0301 (9)0.0362 (10)0.0003 (7)0.0103 (8)0.0036 (8)
C130.0227 (8)0.0248 (8)0.0395 (10)0.0058 (6)0.0197 (7)0.0083 (7)
C140.0181 (7)0.0236 (8)0.0297 (9)0.0033 (6)0.0116 (7)0.0024 (6)
C150.0179 (8)0.0332 (9)0.0485 (12)0.0003 (7)0.0181 (8)0.0024 (8)
C160.0421 (13)0.0772 (17)0.0538 (15)0.0154 (12)0.0307 (12)0.0026 (12)
Br20.04307 (12)0.04776 (13)0.02611 (10)0.00104 (9)0.00875 (9)0.00918 (8)
O30.0278 (6)0.0227 (6)0.0422 (7)0.0029 (5)0.0219 (6)0.0076 (5)
O40.0197 (5)0.0206 (5)0.0349 (7)0.0003 (4)0.0176 (5)0.0019 (5)
N40.0296 (7)0.0279 (7)0.0250 (7)0.0025 (6)0.0170 (6)0.0016 (6)
N50.0208 (7)0.0257 (7)0.0228 (7)0.0004 (5)0.0121 (6)0.0035 (5)
N60.0179 (6)0.0230 (7)0.0235 (7)0.0009 (5)0.0125 (6)0.0027 (5)
C170.0207 (7)0.0196 (7)0.0243 (8)0.0033 (6)0.0124 (6)0.0024 (6)
C180.0348 (9)0.0295 (9)0.0249 (9)0.0045 (7)0.0176 (8)0.0007 (7)
C190.0297 (9)0.0265 (8)0.0217 (8)0.0033 (7)0.0087 (7)0.0013 (6)
C200.0213 (8)0.0259 (8)0.0266 (9)0.0011 (6)0.0105 (7)0.0003 (6)
C210.0216 (8)0.0210 (7)0.0245 (8)0.0033 (6)0.0132 (7)0.0032 (6)
C220.0195 (7)0.0196 (7)0.0237 (8)0.0033 (6)0.0128 (6)0.0045 (6)
C230.0205 (7)0.0195 (7)0.0233 (8)0.0007 (6)0.0123 (6)0.0026 (6)
C240.0200 (7)0.0216 (7)0.0286 (8)0.0004 (6)0.0129 (7)0.0030 (6)
C250.0327 (9)0.0253 (8)0.0305 (9)0.0005 (7)0.0211 (8)0.0004 (7)
C260.0348 (10)0.0340 (9)0.0229 (9)0.0010 (8)0.0140 (8)0.0006 (7)
C270.0252 (9)0.0392 (10)0.0258 (9)0.0058 (7)0.0089 (7)0.0064 (7)
C280.0232 (8)0.0319 (9)0.0263 (9)0.0053 (7)0.0131 (7)0.0041 (7)
C290.0180 (7)0.0208 (7)0.0279 (8)0.0005 (6)0.0131 (7)0.0014 (6)
C300.0179 (7)0.0226 (8)0.0211 (8)0.0007 (6)0.0101 (6)0.0002 (6)
C310.0179 (7)0.0264 (8)0.0322 (9)0.0020 (6)0.0141 (7)0.0007 (7)
C320.0304 (9)0.0356 (10)0.0360 (10)0.0025 (8)0.0200 (8)0.0029 (8)
Geometric parameters (Å, º) top
Br1—C31.9011 (18)Br2—C191.9004 (17)
O1—C141.196 (2)O3—C301.2025 (19)
O2—C141.3305 (19)O4—C301.3258 (19)
O2—C151.464 (2)O4—C311.4644 (19)
N1—C11.326 (2)N4—C171.328 (2)
N1—C21.342 (2)N4—C181.346 (2)
N2—C61.323 (2)N5—C221.323 (2)
N2—C51.386 (2)N5—C211.385 (2)
N3—C11.378 (2)N6—C171.378 (2)
N3—C61.386 (2)N6—C221.381 (2)
N3—C131.452 (2)N6—C291.4489 (19)
C1—C51.406 (2)C17—C211.401 (2)
C2—C31.401 (2)C18—C191.394 (3)
C2—H20.9500C18—H180.9500
C3—C41.387 (2)C19—C201.387 (2)
C4—C51.387 (2)C20—C211.389 (2)
C4—H40.9500C20—H200.9500
C6—C71.467 (2)C22—C231.472 (2)
C7—C121.394 (2)C23—C241.396 (2)
C7—C81.399 (2)C23—C281.398 (2)
C8—C91.390 (3)C24—C251.381 (2)
C8—H80.9500C24—H240.9500
C9—C101.381 (3)C25—C261.393 (3)
C9—H90.9500C25—H250.9500
C10—C111.385 (3)C26—C271.386 (3)
C10—H100.9500C26—H260.9500
C11—C121.393 (3)C27—C281.389 (2)
C11—H110.9500C27—H270.9500
C12—H120.9500C28—H280.9500
C13—C141.511 (2)C29—C301.523 (2)
C13—H13A0.9900C29—H29A0.9900
C13—H13B0.9900C29—H29B0.9900
C15—C161.477 (3)C31—C321.508 (2)
C15—H15A0.9900C31—H31A0.9900
C15—H15B0.9900C31—H31B0.9900
C16—H16A0.9800C32—H32A0.9800
C16—H16B0.9800C32—H32B0.9800
C16—H16C0.9800C32—H32C0.9800
C14—O2—C15117.40 (13)C30—O4—C31117.07 (12)
C1—N1—C2113.65 (14)C17—N4—C18113.36 (15)
C6—N2—C5104.84 (13)C22—N5—C21104.92 (13)
C1—N3—C6106.05 (13)C17—N6—C22106.23 (13)
C1—N3—C13122.69 (14)C17—N6—C29123.50 (13)
C6—N3—C13130.39 (15)C22—N6—C29130.06 (14)
N1—C1—N3126.24 (15)N4—C17—N6126.23 (15)
N1—C1—C5127.80 (16)N4—C17—C21127.87 (15)
N3—C1—C5105.95 (14)N6—C17—C21105.89 (14)
N1—C2—C3122.95 (16)N4—C18—C19123.22 (16)
N1—C2—H2118.5N4—C18—H18118.4
C3—C2—H2118.5C19—C18—H18118.4
C4—C3—C2122.45 (17)C20—C19—C18122.31 (16)
C4—C3—Br1119.41 (13)C20—C19—Br2119.65 (13)
C2—C3—Br1118.14 (13)C18—C19—Br2117.99 (13)
C5—C4—C3115.11 (15)C19—C20—C21115.21 (15)
C5—C4—H4122.4C19—C20—H20122.4
C3—C4—H4122.4C21—C20—H20122.4
N2—C5—C4131.91 (15)N5—C21—C20131.96 (15)
N2—C5—C1110.07 (14)N5—C21—C17110.08 (14)
C4—C5—C1118.02 (15)C20—C21—C17117.94 (15)
N2—C6—N3113.08 (14)N5—C22—N6112.88 (14)
N2—C6—C7122.00 (15)N5—C22—C23123.58 (14)
N3—C6—C7124.91 (15)N6—C22—C23123.53 (14)
C12—C7—C8119.34 (17)C24—C23—C28119.45 (15)
C12—C7—C6122.80 (16)C24—C23—C22118.44 (14)
C8—C7—C6117.74 (15)C28—C23—C22122.08 (14)
C9—C8—C7120.19 (18)C25—C24—C23120.56 (15)
C9—C8—H8119.9C25—C24—H24119.7
C7—C8—H8119.9C23—C24—H24119.7
C10—C9—C8120.21 (19)C24—C25—C26119.93 (16)
C10—C9—H9119.9C24—C25—H25120.0
C8—C9—H9119.9C26—C25—H25120.0
C9—C10—C11120.00 (19)C27—C26—C25119.81 (17)
C9—C10—H10120.0C27—C26—H26120.1
C11—C10—H10120.0C25—C26—H26120.1
C10—C11—C12120.40 (19)C26—C27—C28120.61 (17)
C10—C11—H11119.8C26—C27—H27119.7
C12—C11—H11119.8C28—C27—H27119.7
C11—C12—C7119.85 (19)C27—C28—C23119.62 (16)
C11—C12—H12120.1C27—C28—H28120.2
C7—C12—H12120.1C23—C28—H28120.2
N3—C13—C14112.88 (13)N6—C29—C30111.38 (13)
N3—C13—H13A109.0N6—C29—H29A109.4
C14—C13—H13A109.0C30—C29—H29A109.4
N3—C13—H13B109.0N6—C29—H29B109.4
C14—C13—H13B109.0C30—C29—H29B109.4
H13A—C13—H13B107.8H29A—C29—H29B108.0
O1—C14—O2125.04 (16)O3—C30—O4125.81 (15)
O1—C14—C13126.29 (15)O3—C30—C29124.54 (14)
O2—C14—C13108.66 (13)O4—C30—C29109.65 (13)
O2—C15—C16110.81 (16)O4—C31—C32110.30 (13)
O2—C15—H15A109.5O4—C31—H31A109.6
C16—C15—H15A109.5C32—C31—H31A109.6
O2—C15—H15B109.5O4—C31—H31B109.6
C16—C15—H15B109.5C32—C31—H31B109.6
H15A—C15—H15B108.1H31A—C31—H31B108.1
C15—C16—H16A109.5C31—C32—H32A109.5
C15—C16—H16B109.5C31—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C15—C16—H16C109.5C31—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C2—N1—C1—N3179.53 (16)C18—N4—C17—N6179.81 (15)
C2—N1—C1—C50.8 (3)C18—N4—C17—C211.4 (2)
C6—N3—C1—N1178.59 (16)C22—N6—C17—N4179.21 (15)
C13—N3—C1—N18.2 (2)C29—N6—C17—N43.9 (2)
C6—N3—C1—C50.39 (17)C22—N6—C17—C210.22 (16)
C13—N3—C1—C5170.75 (14)C29—N6—C17—C21175.04 (13)
C1—N1—C2—C30.5 (2)C17—N4—C18—C191.4 (2)
N1—C2—C3—C41.3 (3)N4—C18—C19—C202.6 (3)
N1—C2—C3—Br1179.18 (13)N4—C18—C19—Br2174.78 (13)
C2—C3—C4—C50.6 (3)C18—C19—C20—C210.9 (2)
Br1—C3—C4—C5179.82 (12)Br2—C19—C20—C21176.44 (12)
C6—N2—C5—C4179.93 (18)C22—N5—C21—C20177.30 (17)
C6—N2—C5—C10.04 (18)C22—N5—C21—C170.68 (17)
C3—C4—C5—N2179.51 (17)C19—C20—C21—N5179.45 (16)
C3—C4—C5—C10.5 (2)C19—C20—C21—C171.6 (2)
N1—C1—C5—N2178.69 (16)N4—C17—C21—N5178.69 (15)
N3—C1—C5—N20.28 (18)N6—C17—C21—N50.28 (17)
N1—C1—C5—C41.3 (3)N4—C17—C21—C203.0 (3)
N3—C1—C5—C4179.69 (14)N6—C17—C21—C20178.02 (14)
C5—N2—C6—N30.23 (18)C21—N5—C22—N60.84 (17)
C5—N2—C6—C7179.86 (14)C21—N5—C22—C23179.91 (14)
C1—N3—C6—N20.40 (18)C17—N6—C22—N50.69 (18)
C13—N3—C6—N2169.74 (15)C29—N6—C22—N5174.15 (14)
C1—N3—C6—C7179.69 (15)C17—N6—C22—C23179.94 (14)
C13—N3—C6—C710.4 (3)C29—N6—C22—C235.1 (2)
N2—C6—C7—C12135.06 (18)N5—C22—C23—C2446.9 (2)
N3—C6—C7—C1244.8 (2)N6—C22—C23—C24132.28 (16)
N2—C6—C7—C840.7 (2)N5—C22—C23—C28131.04 (17)
N3—C6—C7—C8139.38 (16)N6—C22—C23—C2849.8 (2)
C12—C7—C8—C90.7 (2)C28—C23—C24—C251.0 (2)
C6—C7—C8—C9175.21 (15)C22—C23—C24—C25179.01 (15)
C7—C8—C9—C100.1 (3)C23—C24—C25—C261.1 (2)
C8—C9—C10—C110.6 (3)C24—C25—C26—C270.5 (3)
C9—C10—C11—C120.6 (3)C25—C26—C27—C280.2 (3)
C10—C11—C12—C70.0 (3)C26—C27—C28—C230.3 (3)
C8—C7—C12—C110.7 (3)C24—C23—C28—C270.3 (2)
C6—C7—C12—C11175.04 (17)C22—C23—C28—C27178.23 (16)
C1—N3—C13—C1477.4 (2)C17—N6—C29—C3083.16 (18)
C6—N3—C13—C14114.83 (18)C22—N6—C29—C30102.78 (18)
C15—O2—C14—O11.7 (3)C31—O4—C30—O33.0 (2)
C15—O2—C14—C13178.48 (15)C31—O4—C30—C29178.06 (13)
N3—C13—C14—O110.3 (3)N6—C29—C30—O329.5 (2)
N3—C13—C14—O2169.93 (15)N6—C29—C30—O4151.51 (13)
C14—O2—C15—C1689.1 (2)C30—O4—C31—C3277.07 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O30.952.553.450 (2)158
C13—H13A···N50.992.523.105 (2)117
C15—H15A···O2i0.992.463.418 (2)164
C24—H24···O1ii0.952.463.142 (2)129
C28—H28···O30.952.533.400 (2)152
C31—H31A···O4iii0.992.543.379 (2)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukowski, L. & Janowiec, M. (1989). Pharmazie, 33, 267–269.  Google Scholar
First citationCappelli, A., la Pericot Mohr, G., Giuliani, G., Galeazzi, S., Anzini, M., Mennuni, L., Ferrari, F., Makovec, F., Kleinrath, E. M., Langer, T., Valoti, M., Giorgi, G. & Vomero, S. (2006). J. Med. Chem. 49, 6451–6464.  CSD CrossRef CAS Google Scholar
First citationDash, N., Chipem, F. A. S., Swaminathan, R. & Krishnamoorthy, G. (2008). Chem. Phys. Lett. 460, 119–124.  CrossRef CAS Google Scholar
First citationHjouji, M. Y., Kandri Rodi, Y., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160771.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemple, C. (1990). J. Med. Chem. 33, 656–661.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds