organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

t-3-Benzyl-r-2,c-6-di­phenyl­piperidin-4-one oxime

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, bDepartment of Chemistry, Thiruvalluvar Arts and Science, College, Kurinjipadi 607 302, Tamilnadu, India, cPrincipal, Government College for Women (Autonomous), Kumbakonam 612 001, Tamilnadu, India, and dDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
*Correspondence e-mail: sivakumar.phd2015@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 December 2016; accepted 12 December 2016; online 16 December 2016)

In the title compound, C24H24N2O [systematic name: (E)-3-benzyl-2,6-di­phenyl­piperidin-4-one oxime], the piperidine ring adopts a slightly distorted chair conformation and the phenyl rings and the benzyl group substituents are attached equatorially. The oxime group makes a dihedral angle of 42.88 (12)° with the piperidine ring. The dihedral angle between the phenyl rings is 71.96 (8)°. The benzyl ring makes dihedral angles of 63.01 (8) and 59.35 (8)° with the two phenyl rings. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming C(7) chains along the c axis. The chains are linked by C—H⋯π inter­actions, forming slabs lying parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title compound, Fig. 1[link], the piperidine ring adopts a slightly distorted chair conformation [puckering parameters: q2 = 0.0698 (13) Å, q3 = 0.6086 (13) Å, Q = 0.6125 (13) Å, θ = 6.50 (12)° and φ = 300.5 (11)°]. The phenyl rings at positions 2 and 6 and the benzyl group at position 3 are attached equatorially. The dihedral angle between the phenyl rings (C6–C11 and C19–C24) at positions 2 and 6, respectively, is 71.96 (8)°. The benzyl ring (C13–C18) makes dihedral angles of 63.01 (8) and 59.35 (8)°, respectively, with the C6–C11 and C19–C24 phenyl rings.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level, showing the atom labelling.

In the crystal, mol­ecules are linked by O1—H1O⋯N1 hydrogen bonds, forming C(7) chains along the c-axis direction (Table 1[link] and Fig. 2[link]). In addition, there are two C—H⋯π inter­actions present, linking the chains to form slabs parallel to the bc plane (Table 1[link] and Fig. 2[link])

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C13–C18 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1i 0.90 (2) 2.00 (2) 2.8682 (16) 163 (2)
C5—H5⋯Cg4ii 0.98 2.95 3.7424 (14) 139
C8—H8⋯Cg3iii 0.93 2.99 3.6890 (18) 133
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis. The hydrogen bonds and C—H⋯π inter­actions (see Table 1[link]) are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

Jayabharathi et al. (2008[Jayabharathi, J., Thangamani, A., Balamurugan, S., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o1211.]) have reported the crystal structure of the bis­(4-meth­oxy­phen­yl) derivative of the title compound, in which the piperidine ring adopts a chair conformation, with equatorial orientation of all substituents except the oxime group at position 4, which has a bis­ectional orientation as in the title compound.

Synthesis and crystallization

A mixture of t-3-benzyl-r-2,c-6-di­phenyl­piperidin-4-one (0.1 mol, 7.71 g), hydroxilamine hydro­chloride (0.1 mol) and sodium acetate trihydrate (0.3 mol) in methanol was refluxed until completion of reaction (monitored by TLC). After completion of the reaction, water was added and extracted with diethyl ether, dried with anhydrous sodium sulfate and the solvent evaporated. The residue obtained was dissolved in ether to get solid crystals. It was recrystallized twice in distilled ethanol to obtain good-quality single white crystals. Yield 2.6 g, m.p. 364 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H24N2O
Mr 356.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 19.5024 (9), 8.7503 (4), 11.6500 (6)
β (°) 100.846 (2)
V3) 1952.58 (16)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.58
Crystal size (mm) 0.22 × 0.10 × 0.04
 
Data collection
Diffractometer Bruker Kappa APEX3 CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.75, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 29419, 3448, 2981
Rint 0.055
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.04
No. of reflections 3448
No. of parameters 252
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3-Benzyl-2,6-diphenylpiperidin-4-one oxime top
Crystal data top
C24H24N2OF(000) = 760
Mr = 356.45Dx = 1.213 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 19.5024 (9) ÅCell parameters from 9891 reflections
b = 8.7503 (4) Åθ = 2.3–66.7°
c = 11.6500 (6) ŵ = 0.58 mm1
β = 100.846 (2)°T = 296 K
V = 1952.58 (16) Å3Plate, colourless
Z = 40.22 × 0.10 × 0.04 mm
Data collection top
Bruker Kappa APEX3 CCD area detector
diffractometer
3448 independent reflections
Radiation source: Incoatec Microfocus Source, Bruker Kappa Duo APEX32981 reflections with I > 2σ(I)
Multilayer Mirror monochromatorRint = 0.055
Detector resolution: 8.3333 pixels mm-1θmax = 66.9°, θmin = 2.3°
φ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1010
Tmin = 0.75, Tmax = 0.98l = 1213
29419 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.371P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3448 reflectionsΔρmax = 0.16 e Å3
252 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71287 (6)0.48150 (14)0.53698 (11)0.0344 (3)
H10.6963400.4484990.6074330.041*
C20.75685 (6)0.62853 (14)0.56741 (11)0.0351 (3)
H20.7743000.6604210.4975500.042*
C30.70827 (6)0.75152 (14)0.59598 (11)0.0355 (3)
C40.64540 (7)0.77889 (15)0.50245 (12)0.0395 (3)
H4A0.6594950.8094540.4302830.047*
H4B0.6166340.8591300.5259880.047*
C50.60474 (6)0.62797 (15)0.48523 (11)0.0364 (3)
H50.5961660.5950630.5616910.044*
C60.75469 (6)0.35187 (14)0.49844 (11)0.0362 (3)
C70.76226 (7)0.21623 (16)0.56053 (13)0.0454 (3)
H70.7393920.2035610.6231050.054*
C80.80339 (9)0.09896 (17)0.53092 (16)0.0569 (4)
H80.8080040.0084030.5734710.068*
C90.83739 (9)0.11667 (19)0.43848 (16)0.0585 (4)
H90.8655200.0386050.4191480.070*
C100.82978 (9)0.2496 (2)0.37481 (14)0.0564 (4)
H100.8524020.2609360.3118170.068*
C110.78851 (8)0.36688 (17)0.40403 (13)0.0467 (3)
H110.7833760.4563590.3601700.056*
C120.81996 (7)0.59761 (15)0.66502 (13)0.0424 (3)
H12A0.8042770.5951800.7392260.051*
H12B0.8386630.4975060.6526620.051*
C130.87751 (7)0.71372 (15)0.67239 (12)0.0398 (3)
C140.91929 (8)0.7167 (2)0.58864 (14)0.0532 (4)
H140.9114040.6465020.5276490.064*
C150.97260 (9)0.8224 (3)0.59409 (18)0.0722 (5)
H150.9997600.8237390.5364880.087*
C160.98532 (10)0.9249 (2)0.6844 (2)0.0799 (6)
H161.0209210.9964310.6880860.096*
C170.94536 (10)0.9215 (2)0.7691 (2)0.0768 (6)
H170.9543930.9898480.8312660.092*
C180.89179 (8)0.81725 (19)0.76293 (15)0.0568 (4)
H180.8648180.8167680.8208130.068*
C190.53459 (6)0.64409 (15)0.40399 (12)0.0378 (3)
C200.48520 (7)0.73866 (17)0.43985 (15)0.0487 (4)
H200.4963180.7890150.5112310.058*
C210.41999 (8)0.75889 (19)0.37115 (17)0.0587 (4)
H210.3880350.8242050.3958150.070*
C220.40208 (8)0.6831 (2)0.26665 (16)0.0588 (5)
H220.3580670.6962560.2205660.071*
C230.45010 (8)0.5872 (2)0.23073 (15)0.0592 (4)
H230.4382080.5347150.1603760.071*
C240.51617 (7)0.56853 (18)0.29906 (13)0.0488 (4)
H240.5482460.5043190.2735910.059*
N10.65090 (5)0.51402 (12)0.44530 (9)0.0347 (3)
N20.71857 (6)0.80763 (13)0.69892 (10)0.0409 (3)
O10.66591 (5)0.91461 (13)0.71101 (10)0.0533 (3)
H1N0.6278 (8)0.4224 (18)0.4301 (13)0.045 (4)*
H1O0.6709 (10)0.935 (2)0.7877 (19)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (6)0.0339 (6)0.0355 (7)0.0025 (5)0.0100 (5)0.0046 (5)
C20.0354 (6)0.0349 (7)0.0352 (7)0.0010 (5)0.0072 (5)0.0033 (5)
C30.0363 (7)0.0318 (6)0.0384 (7)0.0014 (5)0.0071 (5)0.0017 (5)
C40.0426 (7)0.0343 (7)0.0399 (7)0.0059 (5)0.0037 (6)0.0002 (5)
C50.0362 (7)0.0381 (7)0.0361 (7)0.0048 (5)0.0094 (5)0.0017 (5)
C60.0331 (6)0.0345 (7)0.0401 (7)0.0018 (5)0.0047 (5)0.0006 (5)
C70.0432 (7)0.0397 (7)0.0539 (9)0.0009 (6)0.0107 (6)0.0066 (6)
C80.0567 (9)0.0356 (8)0.0759 (11)0.0088 (7)0.0059 (8)0.0047 (7)
C90.0549 (9)0.0518 (9)0.0664 (11)0.0185 (7)0.0051 (8)0.0131 (8)
C100.0565 (9)0.0677 (10)0.0477 (9)0.0158 (8)0.0163 (7)0.0063 (7)
C110.0500 (8)0.0472 (8)0.0446 (8)0.0101 (6)0.0135 (6)0.0042 (6)
C120.0406 (7)0.0395 (7)0.0448 (8)0.0042 (6)0.0024 (6)0.0049 (6)
C130.0341 (6)0.0404 (7)0.0420 (7)0.0057 (5)0.0005 (5)0.0027 (6)
C140.0448 (8)0.0654 (10)0.0484 (9)0.0013 (7)0.0058 (6)0.0032 (7)
C150.0468 (9)0.0985 (15)0.0727 (12)0.0091 (9)0.0145 (8)0.0130 (11)
C160.0558 (11)0.0794 (14)0.0983 (16)0.0246 (10)0.0016 (10)0.0029 (11)
C170.0664 (11)0.0716 (13)0.0866 (14)0.0156 (9)0.0009 (10)0.0255 (10)
C180.0509 (9)0.0639 (10)0.0542 (9)0.0015 (7)0.0063 (7)0.0130 (8)
C190.0339 (6)0.0382 (7)0.0426 (7)0.0004 (5)0.0103 (5)0.0046 (5)
C200.0393 (7)0.0477 (8)0.0606 (9)0.0049 (6)0.0131 (7)0.0003 (7)
C210.0361 (8)0.0526 (9)0.0886 (13)0.0075 (7)0.0153 (8)0.0151 (8)
C220.0329 (7)0.0702 (11)0.0708 (11)0.0039 (7)0.0033 (7)0.0277 (9)
C230.0457 (8)0.0794 (12)0.0497 (9)0.0137 (8)0.0020 (7)0.0041 (8)
C240.0376 (7)0.0600 (9)0.0489 (9)0.0021 (6)0.0083 (6)0.0036 (7)
N10.0317 (5)0.0329 (6)0.0400 (6)0.0009 (4)0.0080 (4)0.0011 (4)
N20.0379 (6)0.0413 (6)0.0437 (7)0.0039 (5)0.0081 (5)0.0019 (5)
O10.0510 (6)0.0622 (7)0.0456 (6)0.0185 (5)0.0067 (5)0.0107 (5)
Geometric parameters (Å, º) top
C1—N11.4820 (16)C12—H12A0.9700
C1—C61.5138 (17)C12—H12B0.9700
C1—C21.5499 (17)C13—C181.379 (2)
C1—H10.9800C13—C141.384 (2)
C2—C31.5116 (17)C14—C151.384 (2)
C2—C121.5344 (18)C14—H140.9300
C2—H20.9800C15—C161.369 (3)
C3—N21.2764 (17)C15—H150.9300
C3—C41.4984 (18)C16—C171.369 (3)
C4—C51.5340 (18)C16—H160.9300
C4—H4A0.9700C17—C181.378 (3)
C4—H4B0.9700C17—H170.9300
C5—N11.4760 (16)C18—H180.9300
C5—C191.5165 (18)C19—C241.377 (2)
C5—H50.9800C19—C201.3924 (19)
C6—C71.3833 (19)C20—C211.381 (2)
C6—C111.3910 (19)C20—H200.9300
C7—C81.385 (2)C21—C221.373 (3)
C7—H70.9300C21—H210.9300
C8—C91.375 (3)C22—C231.380 (3)
C8—H80.9300C22—H220.9300
C9—C101.372 (2)C23—C241.391 (2)
C9—H90.9300C23—H230.9300
C10—C111.386 (2)C24—H240.9300
C10—H100.9300N1—H1N0.920 (16)
C11—H110.9300N2—O11.4161 (14)
C12—C131.5044 (19)O1—H1O0.90 (2)
N1—C1—C6110.00 (10)C13—C12—H12A108.7
N1—C1—C2110.28 (10)C2—C12—H12A108.7
C6—C1—C2112.58 (10)C13—C12—H12B108.7
N1—C1—H1107.9C2—C12—H12B108.7
C6—C1—H1107.9H12A—C12—H12B107.6
C2—C1—H1107.9C18—C13—C14117.77 (14)
C3—C2—C12114.26 (11)C18—C13—C12121.91 (13)
C3—C2—C1107.37 (10)C14—C13—C12120.30 (13)
C12—C2—C1110.81 (10)C15—C14—C13121.14 (16)
C3—C2—H2108.1C15—C14—H14119.4
C12—C2—H2108.1C13—C14—H14119.4
C1—C2—H2108.1C16—C15—C14119.93 (18)
N2—C3—C4125.76 (12)C16—C15—H15120.0
N2—C3—C2119.10 (11)C14—C15—H15120.0
C4—C3—C2114.50 (11)C17—C16—C15119.65 (18)
C3—C4—C5106.84 (10)C17—C16—H16120.2
C3—C4—H4A110.4C15—C16—H16120.2
C5—C4—H4A110.4C16—C17—C18120.36 (18)
C3—C4—H4B110.4C16—C17—H17119.8
C5—C4—H4B110.4C18—C17—H17119.8
H4A—C4—H4B108.6C17—C18—C13121.13 (16)
N1—C5—C19113.47 (11)C17—C18—H18119.4
N1—C5—C4106.96 (10)C13—C18—H18119.4
C19—C5—C4112.64 (10)C24—C19—C20118.17 (13)
N1—C5—H5107.8C24—C19—C5124.30 (12)
C19—C5—H5107.8C20—C19—C5117.50 (12)
C4—C5—H5107.8C21—C20—C19121.07 (15)
C7—C6—C11118.34 (12)C21—C20—H20119.5
C7—C6—C1119.88 (12)C19—C20—H20119.5
C11—C6—C1121.73 (12)C22—C21—C20120.34 (15)
C6—C7—C8121.00 (14)C22—C21—H21119.8
C6—C7—H7119.5C20—C21—H21119.8
C8—C7—H7119.5C21—C22—C23119.27 (14)
C9—C8—C7119.90 (14)C21—C22—H22120.4
C9—C8—H8120.1C23—C22—H22120.4
C7—C8—H8120.1C22—C23—C24120.42 (16)
C10—C9—C8119.98 (14)C22—C23—H23119.8
C10—C9—H9120.0C24—C23—H23119.8
C8—C9—H9120.0C19—C24—C23120.71 (15)
C9—C10—C11120.24 (15)C19—C24—H24119.6
C9—C10—H10119.9C23—C24—H24119.6
C11—C10—H10119.9C5—N1—C1111.44 (10)
C10—C11—C6120.53 (14)C5—N1—H1N110.1 (9)
C10—C11—H11119.7C1—N1—H1N106.0 (10)
C6—C11—H11119.7C3—N2—O1111.03 (11)
C13—C12—C2114.15 (11)N2—O1—H1O106.4 (12)
N1—C1—C2—C352.80 (13)C2—C12—C13—C1472.61 (16)
C6—C1—C2—C3176.06 (10)C18—C13—C14—C151.5 (2)
N1—C1—C2—C12178.22 (10)C12—C13—C14—C15179.83 (14)
C6—C1—C2—C1258.53 (14)C13—C14—C15—C160.9 (3)
C12—C2—C3—N26.87 (17)C14—C15—C16—C170.4 (3)
C1—C2—C3—N2116.46 (13)C15—C16—C17—C181.1 (3)
C12—C2—C3—C4178.23 (11)C16—C17—C18—C130.5 (3)
C1—C2—C3—C454.90 (14)C14—C13—C18—C170.7 (2)
N2—C3—C4—C5110.41 (14)C12—C13—C18—C17179.09 (16)
C2—C3—C4—C560.28 (14)N1—C5—C19—C243.99 (18)
C3—C4—C5—N162.16 (13)C4—C5—C19—C24117.73 (14)
C3—C4—C5—C19172.50 (10)N1—C5—C19—C20174.28 (12)
N1—C1—C6—C7116.50 (13)C4—C5—C19—C2064.00 (15)
C2—C1—C6—C7120.09 (13)C24—C19—C20—C211.3 (2)
N1—C1—C6—C1166.07 (15)C5—C19—C20—C21179.72 (13)
C2—C1—C6—C1157.35 (16)C19—C20—C21—C221.4 (2)
C11—C6—C7—C81.1 (2)C20—C21—C22—C230.4 (2)
C1—C6—C7—C8176.45 (13)C21—C22—C23—C240.6 (2)
C6—C7—C8—C90.0 (2)C20—C19—C24—C230.4 (2)
C7—C8—C9—C100.9 (3)C5—C19—C24—C23178.62 (13)
C8—C9—C10—C110.7 (3)C22—C23—C24—C190.6 (2)
C9—C10—C11—C60.4 (2)C19—C5—N1—C1169.51 (10)
C7—C6—C11—C101.3 (2)C4—C5—N1—C165.66 (13)
C1—C6—C11—C10176.22 (13)C6—C1—N1—C5173.66 (10)
C3—C2—C12—C1378.23 (14)C2—C1—N1—C561.59 (13)
C1—C2—C12—C13160.32 (11)C4—C3—N2—O16.48 (18)
C2—C12—C13—C18109.09 (16)C2—C3—N2—O1176.78 (10)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C13–C18 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.90 (2)2.00 (2)2.8682 (16)163 (2)
C5—H5···Cg4ii0.982.953.7424 (14)139
C8—H8···Cg3iii0.932.993.6890 (18)133
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

We are grateful to the Principal, Dr N. Seraman, Chairman, Mr R. Sattanathan, and Treasurer, Mr T. Ramalingam, of Thiruvalluvar Arts and Science College for giving permission to carry out research work in the Chemistry Laboratory.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayabharathi, J., Thangamani, A., Balamurugan, S., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o1211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds