organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 3-methyl-1-phenyl-5-(p-tol­yl)-1H-pyrazole-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, khalil.i@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 December 2016; accepted 9 December 2016; online 13 December 2016)

In the title compound, C20H20N2O2, the pyrazole ring makes dihedral angles of 39.74 (8) and 60.35 (8)° with the phenyl and toluene rings, respectively. The dihedral angle between the phenyl and toluene rings is 62.01 (7)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazoles are an important class of five-membered nitro­gen heterocycles, which are very widely used as synthetic scaffolds for the construction of bioactive mol­ecules (Ajay et al., 2015[Ajay Kumar, K. & Govindaraju, M. (2015). Int. J. ChemTech Res. 8, 313-322.]). Apart from their synthetic utilities, pyrazole derivatives themselves exhibit a broad spectrum of biological activities (Farghaly et al., 2012[Farghaly, A.-R., Esmail, S., Ali, A.-H., Vanelle, P. & El-Kashef, H. (2012). Arkivoc. vii. 228-241.]). As part of our studies in this area, we herein report on the crystal structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The pyrazole ring (N1/N2/C1–C3) makes dihedral angles of 39.74 (8) and 60.35 (8)° with the phenyl (C8–C13) and the toluene (C14–C19) rings, respectively. The dihedral angle between the phenyl and toluene rings is 62.01 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains propagating along the a axis (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6ACg1i 0.97 2.93 3.794 (2) 149
C19—H19⋯Cg2i 0.93 2.93 3.780 (2) 152
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]) and, for clarity, only H atoms H6A and H19 (grey balls) have been included.

Synthesis and crystallization

To a solution of (E)-ethyl 2-(4-methyl­benzyl­idene)-3-oxo­butano­ate (0.01 mol), which was obtained by our earlier reported procedure (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K. & Lokanath, N. K. (2016). Chem. Data Coll. 3-4, 1-7.]), and phenyl­hydrazine hydro­chloride (0.01 mol) in ethyl alcohol (20 ml), 3–4 drops of piperidine were added. The mixture was refluxed on a water bath for 3 h. The progress of the reaction was monitored by TLC. After completion, the mixture was poured into ice-cold water and the solid separated was filtered, and washed with ice-cold water to obtain the crude title product. The solid obtained was crystallized from methanol by slow evaporation giving pale-yellow rectangular-shaped crystals (90% yield; m.p. 358–359 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H20N2O2
Mr 320.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.2796 (3), 18.9391 (9), 14.6430 (7)
β (°) 91.406 (2)
V3) 1740.97 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.29 × 0.26 × 0.24
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.837, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 13541, 2872, 2535
Rint 0.042
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.143, 1.06
No. of reflections 2872
No. of parameters 221
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.13
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Ethyl 3-methyl-1-phenyl-5-(p-tolyl)-1H-pyrazole-4-carboxylate top
Crystal data top
C20H20N2O2F(000) = 680
Mr = 320.38Dx = 1.222 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2535 reflections
a = 6.2796 (3) Åθ = 4.7–64.5°
b = 18.9391 (9) ŵ = 0.64 mm1
c = 14.6430 (7) ÅT = 296 K
β = 91.406 (2)°Block, yellow
V = 1740.97 (14) Å30.29 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2872 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2535 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.042
Detector resolution: 18.4 pixels mm-1θmax = 64.5°, θmin = 4.7°
φ and ω scansh = 67
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2122
Tmin = 0.837, Tmax = 0.863l = 1617
13541 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0929P)2 + 0.1486P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2872 reflectionsΔρmax = 0.18 e Å3
221 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (12)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0474 (2)0.37329 (6)0.57248 (10)0.0816 (5)
O20.06959 (18)0.48057 (6)0.63324 (9)0.0694 (4)
N10.48074 (19)0.36844 (6)0.76439 (8)0.0500 (4)
N20.4568 (2)0.43678 (6)0.79382 (9)0.0585 (4)
C10.3333 (2)0.35112 (7)0.69887 (9)0.0457 (4)
C20.2068 (2)0.41063 (7)0.68588 (10)0.0497 (5)
C30.2920 (2)0.46213 (8)0.74707 (11)0.0558 (5)
C40.2198 (3)0.53571 (9)0.76614 (16)0.0826 (7)
C50.0209 (2)0.41723 (8)0.62416 (11)0.0537 (5)
C60.2603 (3)0.49523 (10)0.57961 (14)0.0736 (6)
C70.3193 (4)0.56968 (13)0.5990 (2)0.1036 (10)
C80.6407 (2)0.32691 (7)0.81037 (9)0.0486 (4)
C90.8308 (2)0.35962 (8)0.83481 (10)0.0551 (5)
C100.9844 (3)0.32222 (9)0.88330 (11)0.0623 (5)
C110.9497 (3)0.25341 (9)0.90858 (11)0.0660 (6)
C120.7601 (3)0.22121 (9)0.88390 (12)0.0673 (6)
C130.6040 (3)0.25754 (8)0.83511 (11)0.0600 (5)
C140.3253 (2)0.28043 (7)0.65589 (9)0.0459 (4)
C150.4968 (2)0.25452 (8)0.60870 (10)0.0559 (5)
C160.4894 (3)0.18672 (9)0.57228 (11)0.0627 (6)
C170.3139 (3)0.14384 (8)0.58204 (10)0.0586 (5)
C180.1417 (3)0.17121 (8)0.62768 (11)0.0600 (5)
C190.1455 (2)0.23851 (8)0.66403 (10)0.0523 (5)
C200.3068 (4)0.06983 (9)0.54428 (14)0.0861 (8)
H4A0.077000.534700.788100.1240*
H4B0.223300.563100.711000.1240*
H4C0.312700.556700.811600.1240*
H6A0.374100.463600.596600.0880*
H6B0.234100.489100.515100.0880*
H7A0.343200.575100.663100.1550*
H7B0.447000.581600.565000.1550*
H7C0.205900.600400.581300.1550*
H90.854700.406400.818700.0660*
H101.113100.343900.899100.0750*
H111.053200.228800.942100.0790*
H120.736900.174400.900300.0810*
H130.475900.235600.819100.0720*
H150.617000.282400.601300.0670*
H160.605400.169900.540600.0750*
H180.020600.143600.634000.0720*
H190.027500.255800.694000.0630*
H20A0.354100.037200.590700.1290*
H20B0.398300.066600.492900.1290*
H20C0.163500.058500.525200.1290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0878 (9)0.0628 (8)0.0926 (9)0.0055 (6)0.0325 (7)0.0182 (6)
O20.0634 (7)0.0566 (7)0.0874 (8)0.0107 (5)0.0141 (6)0.0085 (6)
N10.0539 (7)0.0411 (6)0.0547 (7)0.0030 (5)0.0019 (5)0.0072 (5)
N20.0651 (8)0.0435 (7)0.0665 (8)0.0021 (6)0.0072 (6)0.0127 (6)
C10.0480 (7)0.0416 (7)0.0476 (7)0.0049 (6)0.0024 (6)0.0036 (6)
C20.0514 (8)0.0425 (8)0.0554 (8)0.0028 (6)0.0036 (6)0.0040 (6)
C30.0599 (9)0.0429 (8)0.0646 (9)0.0014 (6)0.0004 (7)0.0075 (7)
C40.0880 (13)0.0513 (10)0.1075 (15)0.0084 (9)0.0172 (11)0.0246 (10)
C50.0553 (8)0.0458 (8)0.0602 (9)0.0034 (6)0.0028 (7)0.0008 (7)
C60.0557 (9)0.0732 (11)0.0914 (13)0.0050 (8)0.0087 (8)0.0075 (9)
C70.0825 (14)0.0865 (15)0.141 (2)0.0298 (12)0.0146 (14)0.0011 (14)
C80.0544 (8)0.0471 (8)0.0443 (7)0.0018 (6)0.0004 (6)0.0050 (6)
C90.0596 (9)0.0526 (8)0.0529 (8)0.0065 (7)0.0002 (7)0.0024 (6)
C100.0606 (9)0.0696 (10)0.0562 (9)0.0026 (7)0.0073 (7)0.0046 (7)
C110.0734 (11)0.0681 (11)0.0561 (9)0.0117 (8)0.0079 (8)0.0008 (7)
C120.0848 (12)0.0527 (9)0.0642 (10)0.0019 (8)0.0040 (8)0.0054 (7)
C130.0653 (9)0.0509 (9)0.0635 (9)0.0079 (7)0.0024 (7)0.0001 (7)
C140.0527 (8)0.0401 (7)0.0447 (7)0.0015 (6)0.0015 (6)0.0028 (5)
C150.0555 (9)0.0538 (9)0.0586 (9)0.0014 (7)0.0039 (7)0.0049 (7)
C160.0736 (10)0.0595 (10)0.0551 (9)0.0184 (8)0.0023 (7)0.0074 (7)
C170.0862 (11)0.0392 (8)0.0497 (8)0.0059 (7)0.0135 (8)0.0011 (6)
C180.0748 (10)0.0437 (8)0.0610 (9)0.0127 (7)0.0065 (8)0.0006 (7)
C190.0557 (8)0.0460 (8)0.0554 (8)0.0045 (6)0.0028 (6)0.0041 (6)
C200.1353 (18)0.0453 (9)0.0765 (12)0.0147 (10)0.0200 (12)0.0094 (8)
Geometric parameters (Å, º) top
O1—C51.197 (2)C17—C181.386 (2)
O2—C51.3354 (19)C17—C201.507 (2)
O2—C61.443 (2)C18—C191.381 (2)
N1—N21.3736 (16)C4—H4A0.9600
N1—C11.3571 (17)C4—H4B0.9600
N1—C81.4310 (17)C4—H4C0.9600
N2—C31.3173 (19)C6—H6A0.9700
C1—C21.3893 (18)C6—H6B0.9700
C1—C141.4797 (19)C7—H7A0.9600
C2—C31.420 (2)C7—H7B0.9600
C2—C51.4640 (19)C7—H7C0.9600
C3—C41.494 (2)C9—H90.9300
C6—C71.487 (3)C10—H100.9300
C8—C91.3842 (18)C11—H110.9300
C8—C131.384 (2)C12—H120.9300
C9—C101.379 (2)C13—H130.9300
C10—C111.374 (2)C15—H150.9300
C11—C121.378 (3)C16—H160.9300
C12—C131.382 (3)C18—H180.9300
C14—C151.3837 (19)C19—H190.9300
C14—C191.3878 (19)C20—H20A0.9600
C15—C161.391 (2)C20—H20B0.9600
C16—C171.379 (3)C20—H20C0.9600
C5—O2—C6117.92 (13)H4A—C4—H4B109.00
N2—N1—C1111.81 (11)H4A—C4—H4C109.00
N2—N1—C8116.83 (11)H4B—C4—H4C109.00
C1—N1—C8131.19 (11)O2—C6—H6A110.00
N1—N2—C3105.73 (12)O2—C6—H6B110.00
N1—C1—C2106.18 (12)C7—C6—H6A110.00
N1—C1—C14122.33 (12)C7—C6—H6B110.00
C2—C1—C14131.49 (12)H6A—C6—H6B109.00
C1—C2—C3105.40 (12)C6—C7—H7A110.00
C1—C2—C5126.75 (13)C6—C7—H7B109.00
C3—C2—C5127.82 (12)C6—C7—H7C109.00
N2—C3—C2110.89 (13)H7A—C7—H7B109.00
N2—C3—C4118.75 (14)H7A—C7—H7C110.00
C2—C3—C4130.33 (14)H7B—C7—H7C109.00
O1—C5—O2122.73 (14)C8—C9—H9120.00
O1—C5—C2126.78 (14)C10—C9—H9120.00
O2—C5—C2110.49 (13)C9—C10—H10120.00
O2—C6—C7106.61 (17)C11—C10—H10120.00
N1—C8—C9117.82 (12)C10—C11—H11120.00
N1—C8—C13121.71 (13)C12—C11—H11120.00
C9—C8—C13120.36 (13)C11—C12—H12120.00
C8—C9—C10119.41 (14)C13—C12—H12120.00
C9—C10—C11120.82 (16)C8—C13—H13120.00
C10—C11—C12119.40 (16)C12—C13—H13120.00
C11—C12—C13120.83 (16)C14—C15—H15120.00
C8—C13—C12119.17 (16)C16—C15—H15120.00
C1—C14—C15120.97 (12)C15—C16—H16119.00
C1—C14—C19120.02 (12)C17—C16—H16119.00
C15—C14—C19119.00 (13)C17—C18—H18119.00
C14—C15—C16119.99 (13)C19—C18—H18119.00
C15—C16—C17121.55 (16)C14—C19—H19120.00
C16—C17—C18117.69 (15)C18—C19—H19120.00
C16—C17—C20121.75 (17)C17—C20—H20A109.00
C18—C17—C20120.56 (17)C17—C20—H20B110.00
C17—C18—C19121.65 (15)C17—C20—H20C109.00
C14—C19—C18120.08 (13)H20A—C20—H20B109.00
C3—C4—H4A110.00H20A—C20—H20C109.00
C3—C4—H4B109.00H20B—C20—H20C109.00
C3—C4—H4C109.00
C6—O2—C5—O11.5 (2)C5—C2—C3—N2178.10 (14)
C6—O2—C5—C2177.83 (13)C5—C2—C3—C40.1 (3)
C5—O2—C6—C7176.98 (16)C1—C2—C5—O13.0 (3)
C1—N1—N2—C30.62 (16)C1—C2—C5—O2176.28 (13)
C8—N1—N2—C3175.18 (12)C3—C2—C5—O1179.34 (16)
N2—N1—C1—C20.61 (15)C3—C2—C5—O21.4 (2)
N2—N1—C1—C14179.93 (12)N1—C8—C9—C10176.73 (13)
C8—N1—C1—C2174.41 (13)C13—C8—C9—C100.7 (2)
C8—N1—C1—C145.1 (2)N1—C8—C13—C12176.41 (14)
N2—N1—C8—C939.04 (17)C9—C8—C13—C120.5 (2)
N2—N1—C8—C13136.99 (14)C8—C9—C10—C110.9 (2)
C1—N1—C8—C9146.15 (14)C9—C10—C11—C121.0 (3)
C1—N1—C8—C1337.8 (2)C10—C11—C12—C130.8 (3)
N1—N2—C3—C20.38 (16)C11—C12—C13—C80.6 (3)
N1—N2—C3—C4177.88 (14)C1—C14—C15—C16177.18 (13)
N1—C1—C2—C30.35 (15)C19—C14—C15—C161.6 (2)
N1—C1—C2—C5177.75 (13)C1—C14—C19—C18176.92 (13)
C14—C1—C2—C3179.74 (14)C15—C14—C19—C181.9 (2)
C14—C1—C2—C51.6 (2)C14—C15—C16—C170.1 (2)
N1—C1—C14—C1560.00 (19)C15—C16—C17—C181.6 (2)
N1—C1—C14—C19118.79 (15)C15—C16—C17—C20178.80 (16)
C2—C1—C14—C15120.70 (17)C16—C17—C18—C191.3 (2)
C2—C1—C14—C1960.5 (2)C20—C17—C18—C19179.07 (16)
C1—C2—C3—N20.03 (16)C17—C18—C19—C140.4 (2)
C1—C2—C3—C4177.97 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6A···Cg1i0.972.933.794 (2)149
C19—H19···Cg2i0.932.933.780 (2)152
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationAjay Kumar, K. & Govindaraju, M. (2015). Int. J. ChemTech Res. 8, 313–322.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarghaly, A.-R., Esmail, S., Ali, A.-H., Vanelle, P. & El-Kashef, H. (2012). Arkivoc. vii. 228–241.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K. & Lokanath, N. K. (2016). Chem. Data Coll. 3–4, 1–7.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds