organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,3-Di­hydro­benz[4,5]imidazo[2,1-b]thia­zole

CROSSMARK_Color_square_no_text.svg

aNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculte des Sciences, Universite Mohammed V, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ahmed_moussaif@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 December 2016; accepted 5 December 2016; online 9 December 2016)

The asymmetric unit of the title compound, C9H8N2S, consists of two independent mol­ecules (A and B) differing in the conformation of the thia­zole ring: twisted for mol­ecule A and planar for mol­ecule B. In the crystal, mol­ecules stack along the c axis in alternating A and B layers. Within the layers, mol­ecules are linked by C—H⋯π inter­actions, and inversion-related B mol­ecules are linked by offset ππ inter­actions [inter-centroid distance = 3.716 (1) Å]. The two mol­ecules are also linked by a C—H⋯N hydrogen bond, which results finally in the formation of a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

An enormous variety of thia­zolo[3,2-a]benzimidazoles, with unique pharmaceutical and medicinal applications, have been reported (Piskin et al., 2009[Piskin, A. K., Ates-Alagoz, Z., Atac, F. B., Musdal, Y. & Turk, E. (2009). J. Biochem. 34, 39-43.]; Le Sann et al., 2006[Le Sann, C., Baron, A., Mann, J., van den Berg, H., Gunaratnam, M. & Neidle, S. (2006). Org. Biomol. Chem. 4, 1305-1312.]). As a continuation of our research devoted to the development of benzimidazole derivatives (El Bakri et al. 2016[El Bakri, Y., Ramli, Y., Harmaoui, A., Elhafi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161695.]), the title compound was prepared and characterized by single-crystal X-ray diffraction.

The asymmetric unit of the title compound, Fig. 1[link], consists of two independent mol­ecules (A and B), differing in the conformation of the five-membered thia­zole ring. In mol­ecule A, the ring (S1/N2/C7–C9) has a twisted conformation on the C8—C9 bond, while in mol­ecule B the ring (S2/N4/C16–C18) is planar (r.m.s. deviation = 0.035 Å).

[Figure 1]
Figure 1
The mol­ecular structures of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling and 25% probability displacement ellipsoids. The inter­molecular C—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link]).

In the crystal, mol­ecules stack along the c axis in alternating A and B layers (Fig. 2[link]). Within the layers, mol­ecules are linked by C—H⋯π inter­actions (Fig. 2[link] and Table 1[link]), and inversion-related B mol­ecules are linked by offset ππ inter­actions [Cg7⋯Cg9i = 3.716 (1) Å; Cg7 and Cg9 are the centroids of the S2/N4/C16–C18 and C10–C15 rings, respectively; inter­planar distance = 3.638 (1) Å, slippage = 0.763 Å; symmetry code: (i) −x, −y + 1, −z + 1]. The two mol­ecules are also linked by a C—H⋯N hydrogen bond (Table 1[link]), which results finally in the formation of a three-dimensional structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg7 and Cg9 are the centroids of the C1–C6, S2/N4/C16–C18 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯N3 0.92 (2) 2.62 (2) 3.464 (2) 154 (2)
C8—H8ACg3i 0.97 (2) 2.65 (2) 3.543 (2) 154 (2)
C9—H9ACg3ii 0.94 (2) 2.99 (2) 3.661 (3) 129 (2)
C12—H12⋯Cg7iii 0.94 (2) 2.94 (2) 3.838 (2) 161 (2)
C18—H18ACg9iv 0.85 (3) 2.90 (3) 3.471 (4) 126 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound (A mol­ecules shown in blue and B mol­ecules in red). The C—H⋯N hydrogen bonds (see Table 1[link]) are shown as dashed lines, and for clarity only the H atoms involved in the inter­molecular inter­actions have been included.

Synthesis and crystallization

To a solution of benzimidazole-2-thione (1 g, 7 mmol) in 20 ml of di­methyl­formamide, were added potassium bicarbonate (1.93 g, 14 mmol), bromo­tetra­butyl­ammonium (0.1 mmol) and 1,2-di­bromo­ethane (3.5 mmol). The reaction mixture was stirred at room temperature for 4 h. After evaporation of the solvent under reduced pressure, the residue was chromatographed on silica gel (hexa­ne/ethyl acetate: 80/20), giving a solid product. Colourless plate-like crystals were obtained by recrystallization from ethanol solution to afford the title compound in 80% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H8N2S
Mr 176.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 12.7440 (8), 11.4820 (7), 12.8707 (8)
β (°) 118.234 (1)
V3) 1659.25 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.38 × 0.22 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.87, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 15538, 4244, 2702
Rint 0.036
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.02
No. of reflections 4244
No. of parameters 281
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.27, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.], Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012 and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,3-Dihydrobenz[4,5]imidazo[2,1-b]thiazole top
Crystal data top
C9H8N2SF(000) = 736
Mr = 176.23Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7440 (8) ÅCell parameters from 4421 reflections
b = 11.4820 (7) Åθ = 2.5–25.4°
c = 12.8707 (8) ŵ = 0.33 mm1
β = 118.234 (1)°T = 298 K
V = 1659.25 (18) Å3Plate, colourless
Z = 80.38 × 0.22 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4244 independent reflections
Radiation source: fine-focus sealed tube2702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.8°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1515
Tmin = 0.87, Tmax = 0.98l = 1617
15538 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.134All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0762P)2]
where P = (Fo2 + 2Fc2)/3
4244 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60928 (5)0.83270 (4)0.50755 (5)0.06186 (19)
N10.67791 (13)0.67804 (12)0.69522 (13)0.0494 (4)
N20.48777 (12)0.67647 (11)0.55018 (12)0.0423 (3)
C10.61392 (15)0.59028 (14)0.71572 (15)0.0433 (4)
C20.65137 (19)0.51054 (16)0.80769 (17)0.0530 (5)
H20.7323 (17)0.5100 (17)0.8657 (17)0.067 (6)*
C30.5701 (2)0.43030 (17)0.80575 (18)0.0571 (5)
H30.5961 (19)0.375 (2)0.8645 (19)0.076 (6)*
C40.4535 (2)0.42874 (17)0.71608 (19)0.0585 (5)
H40.3984 (17)0.3748 (19)0.7162 (17)0.067 (6)*
C50.41276 (17)0.50738 (16)0.62405 (17)0.0503 (4)
H50.3330 (18)0.5108 (18)0.5642 (16)0.064 (6)*
C60.49469 (14)0.58756 (13)0.62549 (14)0.0408 (4)
C70.59884 (15)0.72369 (15)0.59596 (15)0.0442 (4)
C80.40008 (17)0.71382 (17)0.43372 (16)0.0489 (4)
H8A0.3903 (15)0.6550 (16)0.3759 (15)0.047 (5)*
H8B0.3277 (17)0.7257 (16)0.4307 (15)0.054 (5)*
C90.4497 (2)0.8251 (2)0.4088 (2)0.0637 (6)
H9A0.435 (2)0.8278 (18)0.330 (2)0.080 (7)*
H9B0.4210 (19)0.895 (2)0.4243 (19)0.084 (8)*
S20.09273 (5)0.81657 (5)0.59932 (5)0.06511 (19)
N30.14754 (13)0.66410 (13)0.46357 (14)0.0531 (4)
N40.03893 (13)0.66826 (12)0.43993 (13)0.0447 (3)
C100.07636 (16)0.58368 (15)0.37754 (16)0.0480 (4)
C110.1060 (2)0.50724 (18)0.31224 (19)0.0605 (5)
H110.1862 (18)0.5015 (17)0.3240 (16)0.066 (6)*
C120.0190 (2)0.43527 (18)0.2334 (2)0.0686 (6)
H120.0374 (18)0.384 (2)0.1871 (18)0.073 (6)*
C130.0963 (2)0.43830 (19)0.2175 (2)0.0716 (6)
H130.152 (2)0.389 (2)0.166 (2)0.091 (8)*
C140.12870 (19)0.51306 (18)0.28185 (18)0.0591 (5)
H140.203 (2)0.512 (2)0.2730 (19)0.084 (7)*
C150.04071 (15)0.58468 (14)0.36185 (15)0.0442 (4)
C160.07387 (15)0.71029 (15)0.49625 (15)0.0469 (4)
C170.12433 (18)0.71370 (19)0.47270 (19)0.0520 (5)
H17A0.1465 (16)0.6577 (16)0.5092 (16)0.053 (5)*
H17B0.1870 (19)0.740 (2)0.4091 (19)0.075 (7)*
C180.0634 (2)0.8086 (3)0.5617 (3)0.0783 (7)
H18A0.070 (3)0.805 (3)0.625 (3)0.131 (13)*
H18B0.094 (3)0.885 (3)0.530 (3)0.140 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0674 (4)0.0543 (3)0.0757 (4)0.0089 (2)0.0435 (3)0.0056 (2)
N10.0439 (8)0.0468 (8)0.0566 (9)0.0006 (6)0.0230 (8)0.0052 (7)
N20.0413 (8)0.0416 (8)0.0472 (8)0.0001 (6)0.0235 (7)0.0012 (6)
C10.0447 (10)0.0410 (8)0.0463 (9)0.0037 (7)0.0234 (8)0.0053 (7)
C20.0562 (12)0.0519 (11)0.0466 (10)0.0112 (9)0.0208 (9)0.0023 (8)
C30.0768 (15)0.0488 (11)0.0510 (11)0.0088 (10)0.0347 (11)0.0075 (9)
C40.0698 (14)0.0514 (11)0.0667 (13)0.0033 (10)0.0425 (12)0.0069 (9)
C50.0467 (11)0.0521 (10)0.0566 (11)0.0026 (8)0.0282 (9)0.0031 (9)
C60.0442 (9)0.0388 (8)0.0444 (9)0.0026 (7)0.0250 (8)0.0015 (7)
C70.0458 (10)0.0389 (9)0.0549 (11)0.0022 (7)0.0295 (9)0.0065 (7)
C80.0495 (11)0.0529 (11)0.0459 (10)0.0042 (9)0.0238 (9)0.0050 (9)
C90.0703 (15)0.0566 (13)0.0652 (14)0.0022 (10)0.0329 (12)0.0119 (10)
S20.0623 (4)0.0667 (4)0.0651 (4)0.0156 (2)0.0291 (3)0.0188 (2)
N30.0410 (9)0.0622 (10)0.0572 (9)0.0010 (7)0.0242 (8)0.0005 (7)
N40.0386 (8)0.0468 (8)0.0481 (8)0.0000 (6)0.0200 (7)0.0020 (6)
C100.0489 (10)0.0487 (10)0.0493 (10)0.0088 (8)0.0255 (9)0.0107 (8)
C110.0673 (14)0.0630 (12)0.0626 (13)0.0156 (11)0.0400 (12)0.0100 (10)
C120.0960 (18)0.0571 (12)0.0657 (14)0.0089 (12)0.0487 (14)0.0015 (11)
C130.0914 (18)0.0595 (13)0.0663 (14)0.0141 (12)0.0393 (14)0.0150 (11)
C140.0571 (13)0.0608 (12)0.0614 (12)0.0111 (10)0.0297 (11)0.0076 (10)
C150.0477 (10)0.0408 (8)0.0465 (9)0.0007 (7)0.0242 (8)0.0027 (7)
C160.0427 (10)0.0480 (9)0.0467 (10)0.0032 (8)0.0184 (8)0.0017 (8)
C170.0496 (11)0.0583 (11)0.0543 (12)0.0018 (9)0.0298 (10)0.0017 (10)
C180.0618 (14)0.0847 (18)0.0860 (18)0.0015 (13)0.0330 (14)0.0303 (15)
Geometric parameters (Å, º) top
S1—C71.7385 (18)S2—C161.7336 (18)
S1—C91.821 (3)S2—C181.813 (3)
N1—C71.305 (2)N3—C161.309 (2)
N1—C11.398 (2)N3—C101.397 (2)
N2—C71.362 (2)N4—C161.356 (2)
N2—C61.381 (2)N4—C151.382 (2)
N2—C81.447 (2)N4—C171.438 (2)
C1—C21.390 (3)C10—C111.385 (3)
C1—C61.410 (2)C10—C151.408 (2)
C2—C31.378 (3)C11—C121.370 (3)
C2—H20.945 (19)C11—H110.961 (19)
C3—C41.384 (3)C12—C131.385 (3)
C3—H30.92 (2)C12—H120.94 (2)
C4—C51.381 (3)C13—C141.385 (3)
C4—H40.94 (2)C13—H130.90 (2)
C5—C61.386 (2)C14—C151.379 (3)
C5—H50.942 (19)C14—H140.90 (2)
C8—C91.525 (3)C17—C181.503 (3)
C8—H8A0.968 (18)C17—H17A0.917 (19)
C8—H8B0.915 (19)C17—H17B0.88 (2)
C9—H9A0.94 (2)C18—H18A0.85 (3)
C9—H9B0.94 (2)C18—H18B0.97 (3)
C7—S1—C990.94 (9)C16—S2—C1891.29 (10)
C7—N1—C1103.00 (14)C16—N3—C10103.12 (14)
C7—N2—C6106.40 (14)C16—N4—C15106.52 (14)
C7—N2—C8117.73 (14)C16—N4—C17118.16 (15)
C6—N2—C8135.01 (15)C15—N4—C17135.30 (15)
C2—C1—N1129.76 (17)C11—C10—N3129.68 (18)
C2—C1—C6119.26 (17)C11—C10—C15119.51 (18)
N1—C1—C6110.98 (15)N3—C10—C15110.80 (15)
C3—C2—C1118.20 (19)C12—C11—C10118.3 (2)
C3—C2—H2122.7 (12)C12—C11—H11120.2 (12)
C1—C2—H2119.0 (12)C10—C11—H11121.5 (12)
C2—C3—C4121.65 (19)C11—C12—C13121.7 (2)
C2—C3—H3118.0 (14)C11—C12—H12119.2 (13)
C4—C3—H3120.3 (14)C13—C12—H12119.1 (13)
C5—C4—C3121.78 (19)C12—C13—C14121.5 (2)
C5—C4—H4117.1 (13)C12—C13—H13119.9 (17)
C3—C4—H4121.1 (13)C14—C13—H13118.5 (17)
C4—C5—C6116.60 (18)C15—C14—C13116.7 (2)
C4—C5—H5123.5 (12)C15—C14—H14122.5 (15)
C6—C5—H5119.8 (12)C13—C14—H14120.7 (15)
N2—C6—C5133.16 (16)C14—C15—N4133.23 (17)
N2—C6—C1104.34 (14)C14—C15—C10122.31 (17)
C5—C6—C1122.50 (16)N4—C15—C10104.46 (15)
N1—C7—N2115.25 (15)N3—C16—N4115.10 (16)
N1—C7—S1131.83 (14)N3—C16—S2132.09 (14)
N2—C7—S1112.90 (13)N4—C16—S2112.81 (13)
N2—C8—C9105.81 (16)N4—C17—C18107.23 (17)
N2—C8—H8A110.2 (11)N4—C17—H17A110.8 (12)
C9—C8—H8A109.8 (10)C18—C17—H17A107.0 (12)
N2—C8—H8B110.9 (11)N4—C17—H17B109.3 (14)
C9—C8—H8B112.1 (12)C18—C17—H17B111.7 (15)
H8A—C8—H8B108.1 (15)H17A—C17—H17B110.8 (18)
C8—C9—S1109.29 (15)C17—C18—S2110.27 (16)
C8—C9—H9A111.2 (14)C17—C18—H18A116 (2)
S1—C9—H9A109.9 (14)S2—C18—H18A109 (2)
C8—C9—H9B115.4 (14)C17—C18—H18B112 (2)
S1—C9—H9B103.2 (13)S2—C18—H18B104.2 (19)
H9A—C9—H9B107.5 (19)H18A—C18—H18B104 (3)
C7—N1—C1—C2179.00 (17)C16—N3—C10—C11178.96 (19)
C7—N1—C1—C60.63 (17)C16—N3—C10—C150.18 (19)
N1—C1—C2—C3178.60 (17)N3—C10—C11—C12179.12 (18)
C6—C1—C2—C31.0 (2)C15—C10—C11—C120.4 (3)
C1—C2—C3—C40.8 (3)C10—C11—C12—C130.5 (3)
C2—C3—C4—C50.0 (3)C11—C12—C13—C141.0 (4)
C3—C4—C5—C60.4 (3)C12—C13—C14—C150.4 (3)
C7—N2—C6—C5178.18 (18)C13—C14—C15—N4179.87 (19)
C8—N2—C6—C59.5 (3)C13—C14—C15—C100.6 (3)
C7—N2—C6—C11.27 (16)C16—N4—C15—C14180.0 (2)
C8—N2—C6—C1169.95 (17)C17—N4—C15—C141.7 (3)
C4—C5—C6—N2179.21 (17)C16—N4—C15—C100.44 (18)
C4—C5—C6—C10.2 (3)C17—N4—C15—C10178.74 (19)
C2—C1—C6—N2179.90 (14)C11—C10—C15—C141.0 (3)
N1—C1—C6—N20.42 (17)N3—C10—C15—C14179.95 (17)
C2—C1—C6—C50.6 (2)C11—C10—C15—N4179.32 (16)
N1—C1—C6—C5179.10 (15)N3—C10—C15—N40.40 (18)
C1—N1—C7—N21.54 (18)C10—N3—C16—N40.1 (2)
C1—N1—C7—S1176.53 (14)C10—N3—C16—S2179.86 (15)
C6—N2—C7—N11.88 (19)C15—N4—C16—N30.4 (2)
C8—N2—C7—N1172.86 (15)C17—N4—C16—N3179.02 (16)
C6—N2—C7—S1176.57 (11)C15—N4—C16—S2179.61 (11)
C8—N2—C7—S15.59 (19)C17—N4—C16—S21.0 (2)
C9—S1—C7—N1176.19 (18)C18—S2—C16—N3178.1 (2)
C9—S1—C7—N25.70 (14)C18—S2—C16—N41.92 (17)
C7—N2—C8—C916.1 (2)C16—N4—C17—C184.0 (3)
C6—N2—C8—C9176.18 (18)C15—N4—C17—C18177.8 (2)
N2—C8—C9—S118.9 (2)N4—C17—C18—S25.1 (3)
C7—S1—C9—C814.46 (17)C16—S2—C18—C174.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg7 and Cg9 are the centroids of the C1–C6, S2/N4/C16–C18 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8B···N30.92 (2)2.62 (2)3.464 (2)154 (2)
C8—H8A···Cg3i0.97 (2)2.65 (2)3.543 (2)154 (2)
C9—H9A···Cg3ii0.94 (2)2.99 (2)3.661 (3)129 (2)
C12—H12···Cg7iii0.94 (2)2.94 (2)3.838 (2)161 (2)
C18—H18A···Cg9iv0.85 (3)2.90 (3)3.471 (4)126 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y1/2, z+1/2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Bakri, Y., Ramli, Y., Harmaoui, A., Elhafi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161695.  Google Scholar
First citationLe Sann, C., Baron, A., Mann, J., van den Berg, H., Gunaratnam, M. & Neidle, S. (2006). Org. Biomol. Chem. 4, 1305–1312.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiskin, A. K., Ates-Alagoz, Z., Atac, F. B., Musdal, Y. & Turk, E. (2009). J. Biochem. 34, 39–43.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds