organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Methyl-4,5,6,7,8,9-hexa­hydro­cyclo­octa­[d][1,2,3]selena­diazol]-3-ium iodide triiodide (3/2/1)

CROSSMARK_Color_square_no_text.svg

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 30 November 2016; accepted 6 December 2016; online 9 December 2016)

The title compound, 3C9H15N2Se+·I3·2I, was prepared by methyl­ation of the selena­diazole with methyl iodide. The asymmetric unit is composed of three independent selena­diazo­lium ions arranged in layers and connected via I3·(I)2 anion layers. The distances between the iodine and selenium atoms are significantly shorter than the nitro­gen-to-iodine distances.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Selena­diazo­les are synthons for the preparation of strained cyclo­alkynes (Bissinger et al., 1988[Bissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221-224.]; Detert & Meier, 1997[Detert, H. & Meier, H. (1997). Liebigs Annalen, pp. 1557-1564.]). Cyclo­octeno-1,2,3-selena­diazo­le is also known (Meier & Voigt, 1972[Meier, H. & Voigt, E. (1972). Tetrahedron, 28, 187-198.]). The structure of a chloro-1,2,3-selena­diazole, viz 3-chloro-5-methyl-2-p-tolyl-3H-3-selenaindazole, has been reported (Jones & De Ramírez Arellano, 1995[Jones, P. G. & De Ramírez Arellano, M. C. (1995). Chem. Ber. 128, 741-742.]). Benzo-annulated selena­diazo­lium salts have been described by Jaffari et al. (1970[Jaffari, G. A., Nunn, A. J. & Ralph, J. T. (1970). J. Chem. Soc. C, pp. 2060-2062.]), and the only hitherto reported 1,2,3-selena­diazo­lium salt has been described by Butler & Fox (2001[Butler, R. N. & Fox, A. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 394-397.]).

The asymmetric unit of the title compound, Fig. 1[link], is composed of three independent but nearly identical selena­diazo­lium ions (A, B, and C), two iodide and one triiodide anions. The selenadiolium ring is essentially planar, with a maximum deviation from the mean plane of 0.018 (8) Å for atom N3A, and the methyl group lying 0.039 (10) Å above the mean plane. The adjacent hexa­methyl­ene ether allows a staggered conformation.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal, the cations are arranged in ribbons connected via the iodide and triiodide anions. A view normal to plane (101) gives a ABCA sequence of cations (Fig. 2[link]), but viewed along the a axis the sequence is AABCCBAA (Fig. 3[link]). The shortest distances between anions and cations are Se1A—I6 = 3.349 (1) Å, Se1B—I3 = 3.319 (1) Å, and Se1C—I6 = 3.314 (1) Å. The distances to the nitro­gen atom are more than ca 3.8 Å, like the distances of the triiodide to the selena­diazole atoms.

[Figure 2]
Figure 2
A view normal to plane (101) of the crystal packing of the title compound. H atoms have been omitted for clarity and the residues are drawn with different colours.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. H atoms have been omitted for clarity and the residues are drawn with different colours.

Synthesis and crystallization

The title compound was prepared by adding methyl iodide (3 ml) to a solution of cyclo­octeno-1,2,3-selena­diazole (0.65 g, 3 mmol) in nitro­methane (10 ml). The mixture was kept in the dark at ambient temperature for 24 d. Evaporation of the solvent and chromatography on silica gel using chloro­form/propanol-2 as eluent yielded 0.32 g of the pure title compound (34%). 1H NMR: (CDCl3, 400 MHz): δ = 4.48 (s, 3 H, CH3), 3.68 (`t 2 H, 9-H), 3.21 (`t 2 H, 4-H), 1.83 (m, 4 H), 1.37 (m, 4 H), NOE: irradiation into δ = 4.48 gives positive NOEs at δ = 3.18, δ = 1.8; 13C NMR (CDCl3): 173.7 (C—Se), 154.4 (C—N), 49.1 CH3, 31.2 C-9, 31.1 C-8), 27.9 C-5, 26.68, 25.64 C-6, 24.78 C-7; 77Se NMR (CDCl3, Me2Se): 1299.63; MS (FD) 231.1 (100%, Se-pattern, cation), 587 (9%, Se2 pattern, M2 – I). Recrystallization from chloro­form gave brownish-yellow crystals (m.p. 444 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula 3C9H15N2Se+·I3·2I
Mr 1325.07
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.2438 (4), 13.9980 (8), 20.1035 (11)
α, β, γ (°) 81.913 (2), 86.409 (2), 78.801 (2)
V3) 1978.46 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.72
Crystal size (mm) 0.74 × 0.34 × 0.05
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.095, 0.810
No. of measured, independent and observed [I > 2σ(I)] reflections 64010, 9472, 8038
Rint 0.035
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.149, 1.16
No. of reflections 9472
No. of parameters 376
H-atom treatment H-atom parameters constrained
   
Δρmax, Δρmin (e Å−3) 3.41, −2.67
Computer programs: SMART and SAINT (Bruker (1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker (1997); cell refinement: SAINT (Bruker (1997); data reduction: SAINT (Bruker (1997); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

3-Methyl-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]selenadiazol]-3-ium iodide triiodide (3/2/1) top
Crystal data top
3C9H15N2Se+·I3·2IF(000) = 1232
Mr = 1325.07Dx = 2.224 Mg m3
Triclinic, P1Melting point: 444 K
a = 7.2438 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.9980 (8) ÅCell parameters from 9806 reflections
c = 20.1035 (11) Åθ = 2.4–27.9°
α = 81.913 (2)°µ = 6.72 mm1
β = 86.409 (2)°T = 173 K
γ = 78.801 (2)°Plate, brown
V = 1978.46 (19) Å30.74 × 0.34 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX2
diffractometer
9472 independent reflections
Radiation source: sealed Tube8038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
CCD scanθmax = 27.9°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 99
Tmin = 0.095, Tmax = 0.810k = 1818
64010 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0374P)2 + 36.6012P]
where P = (Fo2 + 2Fc2)/3
9472 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 3.41 e Å3
0 restraintsΔρmin = 2.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se1A0.19773 (12)0.77479 (6)0.32688 (4)0.02677 (18)
N2A0.1532 (11)0.8825 (5)0.3593 (4)0.0280 (15)
N3A0.0154 (10)0.8599 (5)0.3836 (4)0.0260 (15)
C4A0.1281 (12)0.7720 (6)0.3791 (4)0.0261 (17)
C5A0.3182 (12)0.7445 (7)0.4088 (5)0.0302 (19)
H5A0.3746750.8041140.4050330.036*
H5B0.3996340.6975540.3819730.036*
C6A0.3181 (13)0.6989 (7)0.4819 (5)0.035 (2)
H6A0.2615130.7505550.5099170.042*
H6B0.4501640.6750270.4950580.042*
C7A0.2097 (14)0.6121 (7)0.4978 (5)0.034 (2)
H7A0.2266130.5845700.5455980.040*
H7B0.0738160.6386400.4921670.040*
C8A0.2688 (14)0.5273 (7)0.4544 (5)0.037 (2)
H8A0.2799130.4640190.4843150.044*
H8B0.3949470.5311900.4334280.044*
C9A0.1315 (14)0.5272 (7)0.3982 (5)0.035 (2)
H9A0.1627670.4625720.3814880.042*
H9B0.0023600.5335590.4185480.042*
C10A0.1303 (12)0.6081 (7)0.3372 (5)0.0300 (18)
H10A0.2619900.6082230.3207900.036*
H10B0.0627130.5905460.3007270.036*
C11A0.0417 (11)0.7103 (6)0.3501 (4)0.0230 (16)
C12A0.0779 (15)0.9412 (7)0.4105 (5)0.035 (2)
H12A0.1755330.9647140.3801990.053*
H12B0.1289290.9175150.4551040.053*
H12C0.0295510.9951400.4140680.053*
Se1B1.21598 (11)0.73576 (6)0.16638 (4)0.02384 (17)
N2B1.1750 (9)0.6258 (5)0.1369 (4)0.0240 (14)
N3B1.0036 (9)0.6393 (5)0.1162 (3)0.0199 (13)
C4B0.8875 (11)0.7294 (6)0.1200 (4)0.0238 (16)
C5B0.6933 (11)0.7517 (6)0.0947 (5)0.0265 (17)
H5C0.6133810.7994800.1213700.032*
H5D0.6404560.6908310.1013180.032*
C6B0.6870 (14)0.7947 (7)0.0190 (5)0.036 (2)
H6C0.7463740.7419100.0077430.043*
H6D0.5534810.8143550.0066870.043*
C7B0.7817 (14)0.8813 (7)0.0010 (5)0.0327 (19)
H7C0.7539790.9068790.0484880.039*
H7D0.9194760.8577410.0011500.039*
C8B0.7278 (13)0.9675 (7)0.0408 (5)0.0303 (19)
H8C0.7082591.0295890.0095180.036*
H8D0.6060170.9623900.0649460.036*
C9B0.8711 (12)0.9740 (6)0.0924 (4)0.0273 (17)
H9C0.9976990.9663340.0699230.033*
H9D0.8414551.0406380.1061640.033*
C10B0.8797 (11)0.8990 (6)0.1557 (4)0.0234 (16)
H10C0.9493690.9207140.1898490.028*
H10D0.7497870.8982690.1740110.028*
C11B0.9722 (11)0.7956 (6)0.1450 (4)0.0207 (15)
C12B0.9456 (14)0.5560 (7)0.0915 (5)0.033 (2)
H12D1.0548610.5027590.0889060.050*
H12E0.8943500.5771250.0466780.050*
H12F0.8489820.5325110.1223320.050*
Se1C0.40931 (14)0.44524 (7)0.21655 (5)0.0337 (2)
N2C0.2961 (11)0.3728 (6)0.1706 (4)0.0312 (16)
N3C0.3370 (10)0.2803 (5)0.1976 (4)0.0271 (15)
C4C0.4462 (12)0.2538 (6)0.2531 (4)0.0258 (17)
C5C0.4998 (13)0.1494 (6)0.2839 (4)0.0297 (18)
H5E0.3954300.1145620.2797660.036*
H5F0.5204680.1472350.3323710.036*
C6C0.6789 (14)0.0972 (7)0.2500 (5)0.039 (2)
H6E0.6477240.0860740.2047820.046*
H6F0.7194660.0320280.2763710.046*
C7C0.8449 (14)0.1516 (8)0.2423 (6)0.041 (2)
H7E0.8134690.2111960.2091410.050*
H7F0.9561680.1088060.2240060.050*
C8C0.8968 (16)0.1819 (9)0.3080 (6)0.048 (3)
H8E1.0348910.1625520.3123220.058*
H8F0.8369550.1444550.3459460.058*
C9C0.8386 (16)0.2934 (7)0.3147 (6)0.043 (3)
H9E0.9116680.3081380.3507080.051*
H9F0.8744750.3314200.2721190.051*
C10C0.6295 (14)0.3290 (7)0.3303 (5)0.036 (2)
H10E0.5889180.2847860.3689910.043*
H10F0.6124450.3954170.3440160.043*
C11C0.5052 (13)0.3329 (7)0.2735 (4)0.0295 (18)
C12C0.2703 (15)0.2090 (7)0.1611 (5)0.037 (2)
H12G0.1334390.2271980.1571110.056*
H12H0.3022980.1429460.1860380.056*
H12I0.3311390.2097670.1161680.056*
I10.74529 (9)0.31836 (5)0.05629 (3)0.03944 (16)
I20.5000000.5000000.0000000.02823 (17)
I40.24632 (9)0.18708 (5)0.45955 (3)0.04046 (17)
I50.5000000.0000000.5000000.0348 (2)
I30.33131 (8)0.92120 (4)0.23051 (3)0.03323 (15)
I60.67814 (9)0.58573 (5)0.26699 (4)0.03840 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se1A0.0252 (4)0.0255 (4)0.0271 (4)0.0002 (3)0.0019 (3)0.0016 (3)
N2A0.042 (4)0.015 (3)0.025 (3)0.002 (3)0.001 (3)0.002 (3)
N3A0.030 (4)0.023 (3)0.024 (3)0.006 (3)0.001 (3)0.002 (3)
C4A0.025 (4)0.020 (4)0.033 (4)0.004 (3)0.007 (3)0.003 (3)
C5A0.018 (4)0.032 (5)0.042 (5)0.007 (3)0.002 (3)0.007 (4)
C6A0.026 (4)0.037 (5)0.041 (5)0.004 (4)0.015 (4)0.001 (4)
C7A0.036 (5)0.031 (5)0.029 (4)0.000 (4)0.002 (4)0.005 (4)
C8A0.030 (5)0.034 (5)0.042 (5)0.002 (4)0.006 (4)0.002 (4)
C9A0.035 (5)0.025 (4)0.042 (5)0.004 (4)0.001 (4)0.001 (4)
C10A0.023 (4)0.033 (5)0.033 (5)0.001 (3)0.002 (3)0.010 (4)
C11A0.021 (4)0.025 (4)0.020 (4)0.004 (3)0.006 (3)0.003 (3)
C12A0.045 (6)0.020 (4)0.042 (5)0.010 (4)0.004 (4)0.004 (4)
Se1B0.0184 (4)0.0231 (4)0.0285 (4)0.0008 (3)0.0026 (3)0.0037 (3)
N2B0.018 (3)0.021 (3)0.030 (4)0.002 (3)0.001 (3)0.004 (3)
N3B0.020 (3)0.018 (3)0.024 (3)0.008 (3)0.002 (2)0.001 (2)
C4B0.021 (4)0.025 (4)0.023 (4)0.001 (3)0.000 (3)0.002 (3)
C5B0.019 (4)0.023 (4)0.037 (5)0.002 (3)0.003 (3)0.003 (3)
C6B0.035 (5)0.034 (5)0.036 (5)0.003 (4)0.012 (4)0.001 (4)
C7B0.036 (5)0.032 (5)0.027 (4)0.002 (4)0.003 (4)0.001 (4)
C8B0.028 (4)0.026 (4)0.030 (4)0.007 (3)0.003 (3)0.003 (3)
C9B0.025 (4)0.023 (4)0.031 (4)0.002 (3)0.001 (3)0.003 (3)
C10B0.021 (4)0.021 (4)0.026 (4)0.002 (3)0.004 (3)0.003 (3)
C11B0.017 (4)0.022 (4)0.019 (3)0.003 (3)0.004 (3)0.001 (3)
C12B0.031 (5)0.026 (4)0.044 (5)0.003 (4)0.003 (4)0.014 (4)
Se1C0.0388 (5)0.0218 (4)0.0387 (5)0.0037 (4)0.0162 (4)0.0038 (4)
N2C0.034 (4)0.027 (4)0.032 (4)0.004 (3)0.012 (3)0.001 (3)
N3C0.028 (4)0.025 (4)0.028 (4)0.003 (3)0.006 (3)0.004 (3)
C4C0.025 (4)0.028 (4)0.021 (4)0.001 (3)0.002 (3)0.003 (3)
C5C0.038 (5)0.027 (4)0.022 (4)0.001 (4)0.005 (3)0.001 (3)
C6C0.039 (5)0.029 (5)0.044 (6)0.007 (4)0.005 (4)0.010 (4)
C7C0.031 (5)0.038 (5)0.050 (6)0.006 (4)0.000 (4)0.008 (5)
C8C0.036 (6)0.049 (7)0.054 (7)0.010 (5)0.015 (5)0.010 (5)
C9C0.052 (6)0.030 (5)0.043 (6)0.003 (4)0.023 (5)0.000 (4)
C10C0.042 (5)0.035 (5)0.031 (5)0.002 (4)0.015 (4)0.007 (4)
C11C0.030 (4)0.030 (4)0.027 (4)0.001 (4)0.004 (3)0.007 (3)
C12C0.046 (6)0.032 (5)0.037 (5)0.013 (4)0.012 (4)0.005 (4)
I10.0347 (3)0.0381 (3)0.0390 (3)0.0032 (3)0.0030 (3)0.0041 (3)
I20.0236 (4)0.0337 (4)0.0250 (4)0.0022 (3)0.0000 (3)0.0005 (3)
I40.0324 (3)0.0504 (4)0.0351 (3)0.0014 (3)0.0037 (2)0.0050 (3)
I50.0231 (4)0.0508 (5)0.0319 (4)0.0064 (4)0.0006 (3)0.0120 (4)
I30.0282 (3)0.0291 (3)0.0442 (3)0.0070 (2)0.0031 (2)0.0107 (2)
I60.0360 (3)0.0374 (3)0.0461 (4)0.0137 (3)0.0014 (3)0.0117 (3)
Geometric parameters (Å, º) top
Se1A—N2A1.815 (7)C7B—H7D0.9900
Se1A—C11A1.848 (8)C8B—C9B1.536 (13)
N2A—N3A1.308 (11)C8B—H8C0.9900
N3A—C4A1.350 (11)C8B—H8D0.9900
N3A—C12A1.482 (11)C9B—C10B1.528 (12)
C4A—C11A1.369 (12)C9B—H9C0.9900
C4A—C5A1.495 (12)C9B—H9D0.9900
C5A—C6A1.517 (13)C10B—C11B1.511 (10)
C5A—H5A0.9900C10B—H10C0.9900
C5A—H5B0.9900C10B—H10D0.9900
C6A—C7A1.556 (14)C12B—H12D0.9800
C6A—H6A0.9900C12B—H12E0.9800
C6A—H6B0.9900C12B—H12F0.9800
C7A—C8A1.550 (14)Se1C—N2C1.798 (8)
C7A—H7A0.9900Se1C—C11C1.853 (9)
C7A—H7B0.9900N2C—N3C1.315 (10)
C8A—C9A1.551 (14)N3C—C4C1.375 (11)
C8A—H8A0.9900N3C—C12C1.484 (11)
C8A—H8B0.9900C4C—C11C1.382 (13)
C9A—C10A1.547 (13)C4C—C5C1.491 (12)
C9A—H9A0.9900C5C—C6C1.531 (13)
C9A—H9B0.9900C5C—H5E0.9900
C10A—C11A1.501 (12)C5C—H5F0.9900
C10A—H10A0.9900C6C—C7C1.533 (15)
C10A—H10B0.9900C6C—H6E0.9900
C12A—H12A0.9800C6C—H6F0.9900
C12A—H12B0.9800C7C—C8C1.533 (15)
C12A—H12C0.9800C7C—H7E0.9900
Se1B—N2B1.806 (7)C7C—H7F0.9900
Se1B—C11B1.851 (8)C8C—C9C1.558 (15)
N2B—N3B1.305 (9)C8C—H8E0.9900
N3B—C4B1.382 (10)C8C—H8F0.9900
N3B—C12B1.471 (10)C9C—C10C1.527 (15)
C4B—C11B1.371 (12)C9C—H9E0.9900
C4B—C5B1.486 (11)C9C—H9F0.9900
C5B—C6B1.557 (13)C10C—C11C1.487 (12)
C5B—H5C0.9900C10C—H10E0.9900
C5B—H5D0.9900C10C—H10F0.9900
C6B—C7B1.501 (14)C12C—H12G0.9800
C6B—H6C0.9900C12C—H12H0.9800
C6B—H6D0.9900C12C—H12I0.9800
C7B—C8B1.541 (13)I1—I22.9309 (6)
C7B—H7C0.9900I4—I52.9351 (7)
N2A—Se1A—C11A89.1 (4)C7B—C8B—H8C108.3
N3A—N2A—Se1A107.4 (5)C9B—C8B—H8D108.3
N2A—N3A—C4A122.1 (7)C7B—C8B—H8D108.3
N2A—N3A—C12A114.7 (7)H8C—C8B—H8D107.4
C4A—N3A—C12A123.0 (8)C10B—C9B—C8B116.0 (8)
N3A—C4A—C11A112.3 (8)C10B—C9B—H9C108.3
N3A—C4A—C5A122.3 (8)C8B—C9B—H9C108.3
C11A—C4A—C5A125.1 (8)C10B—C9B—H9D108.3
C4A—C5A—C6A114.6 (7)C8B—C9B—H9D108.3
C4A—C5A—H5A108.6H9C—C9B—H9D107.4
C6A—C5A—H5A108.6C11B—C10B—C9B114.5 (7)
C4A—C5A—H5B108.6C11B—C10B—H10C108.6
C6A—C5A—H5B108.6C9B—C10B—H10C108.6
H5A—C5A—H5B107.6C11B—C10B—H10D108.6
C5A—C6A—C7A114.9 (8)C9B—C10B—H10D108.6
C5A—C6A—H6A108.6H10C—C10B—H10D107.6
C7A—C6A—H6A108.6C4B—C11B—C10B125.7 (7)
C5A—C6A—H6B108.6C4B—C11B—Se1B108.6 (6)
C7A—C6A—H6B108.6C10B—C11B—Se1B125.7 (6)
H6A—C6A—H6B107.5N3B—C12B—H12D109.5
C8A—C7A—C6A115.9 (8)N3B—C12B—H12E109.5
C8A—C7A—H7A108.3H12D—C12B—H12E109.5
C6A—C7A—H7A108.3N3B—C12B—H12F109.5
C8A—C7A—H7B108.3H12D—C12B—H12F109.5
C6A—C7A—H7B108.3H12E—C12B—H12F109.5
H7A—C7A—H7B107.4N2C—Se1C—C11C89.6 (4)
C7A—C8A—C9A114.6 (8)N3C—N2C—Se1C108.9 (5)
C7A—C8A—H8A108.6N2C—N3C—C4C120.4 (7)
C9A—C8A—H8A108.6N2C—N3C—C12C115.6 (7)
C7A—C8A—H8B108.6C4C—N3C—C12C123.9 (8)
C9A—C8A—H8B108.6N3C—C4C—C11C112.5 (8)
H8A—C8A—H8B107.6N3C—C4C—C5C121.9 (8)
C10A—C9A—C8A116.5 (8)C11C—C4C—C5C125.5 (8)
C10A—C9A—H9A108.2C4C—C5C—C6C111.5 (8)
C8A—C9A—H9A108.2C4C—C5C—H5E109.3
C10A—C9A—H9B108.2C6C—C5C—H5E109.3
C8A—C9A—H9B108.2C4C—C5C—H5F109.3
H9A—C9A—H9B107.3C6C—C5C—H5F109.3
C11A—C10A—C9A115.7 (7)H5E—C5C—H5F108.0
C11A—C10A—H10A108.4C5C—C6C—C7C115.5 (8)
C9A—C10A—H10A108.4C5C—C6C—H6E108.4
C11A—C10A—H10B108.4C7C—C6C—H6E108.4
C9A—C10A—H10B108.4C5C—C6C—H6F108.4
H10A—C10A—H10B107.4C7C—C6C—H6F108.4
C4A—C11A—C10A125.3 (8)H6E—C6C—H6F107.5
C4A—C11A—Se1A109.0 (6)C6C—C7C—C8C113.9 (10)
C10A—C11A—Se1A125.7 (6)C6C—C7C—H7E108.8
N3A—C12A—H12A109.5C8C—C7C—H7E108.8
N3A—C12A—H12B109.5C6C—C7C—H7F108.8
H12A—C12A—H12B109.5C8C—C7C—H7F108.8
N3A—C12A—H12C109.5H7E—C7C—H7F107.7
H12A—C12A—H12C109.5C7C—C8C—C9C115.5 (9)
H12B—C12A—H12C109.5C7C—C8C—H8E108.4
N2B—Se1B—C11B88.9 (3)C9C—C8C—H8E108.4
N3B—N2B—Se1B110.2 (5)C7C—C8C—H8F108.4
N2B—N3B—C4B118.5 (7)C9C—C8C—H8F108.4
N2B—N3B—C12B117.3 (7)H8E—C8C—H8F107.5
C4B—N3B—C12B124.2 (7)C10C—C9C—C8C115.3 (10)
C11B—C4B—N3B113.8 (7)C10C—C9C—H9E108.5
C11B—C4B—C5B124.4 (7)C8C—C9C—H9E108.5
N3B—C4B—C5B121.6 (7)C10C—C9C—H9F108.5
C4B—C5B—C6B112.5 (7)C8C—C9C—H9F108.5
C4B—C5B—H5C109.1H9E—C9C—H9F107.5
C6B—C5B—H5C109.1C11C—C10C—C9C114.5 (8)
C4B—C5B—H5D109.1C11C—C10C—H10E108.6
C6B—C5B—H5D109.1C9C—C10C—H10E108.6
H5C—C5B—H5D107.8C11C—C10C—H10F108.6
C7B—C6B—C5B115.9 (8)C9C—C10C—H10F108.6
C7B—C6B—H6C108.3H10E—C10C—H10F107.6
C5B—C6B—H6C108.3C4C—C11C—C10C126.0 (8)
C7B—C6B—H6D108.3C4C—C11C—Se1C108.7 (6)
C5B—C6B—H6D108.3C10C—C11C—Se1C125.2 (7)
H6C—C6B—H6D107.4N3C—C12C—H12G109.5
C6B—C7B—C8B116.9 (8)N3C—C12C—H12H109.5
C6B—C7B—H7C108.1H12G—C12C—H12H109.5
C8B—C7B—H7C108.1N3C—C12C—H12I109.5
C6B—C7B—H7D108.1H12G—C12C—H12I109.5
C8B—C7B—H7D108.1H12H—C12C—H12I109.5
H7C—C7B—H7D107.3I1i—I2—I1180.0
C9B—C8B—C7B115.7 (7)I4—I5—I4ii180.0
C9B—C8B—H8C108.3
C11A—Se1A—N2A—N3A2.1 (6)C6B—C7B—C8B—C9B102.4 (10)
Se1A—N2A—N3A—C4A3.5 (10)C7B—C8B—C9B—C10B74.5 (10)
Se1A—N2A—N3A—C12A178.2 (6)C8B—C9B—C10B—C11B73.3 (9)
N2A—N3A—C4A—C11A3.3 (12)N3B—C4B—C11B—C10B179.1 (7)
C12A—N3A—C4A—C11A177.5 (8)C5B—C4B—C11B—C10B4.7 (13)
N2A—N3A—C4A—C5A177.9 (8)N3B—C4B—C11B—Se1B1.3 (9)
C12A—N3A—C4A—C5A7.9 (13)C5B—C4B—C11B—Se1B177.4 (7)
N3A—C4A—C5A—C6A87.2 (10)C9B—C10B—C11B—C4B81.2 (10)
C11A—C4A—C5A—C6A86.7 (11)C9B—C10B—C11B—Se1B101.4 (8)
C4A—C5A—C6A—C7A50.6 (11)N2B—Se1B—C11B—C4B1.0 (6)
C5A—C6A—C7A—C8A53.8 (11)N2B—Se1B—C11B—C10B178.8 (7)
C6A—C7A—C8A—C9A103.0 (10)C11C—Se1C—N2C—N3C1.1 (7)
C7A—C8A—C9A—C10A72.2 (11)Se1C—N2C—N3C—C4C1.7 (10)
C8A—C9A—C10A—C11A72.0 (11)Se1C—N2C—N3C—C12C173.9 (7)
N3A—C4A—C11A—C10A179.2 (8)N2C—N3C—C4C—C11C1.4 (12)
C5A—C4A—C11A—C10A6.4 (14)C12C—N3C—C4C—C11C173.8 (9)
N3A—C4A—C11A—Se1A1.2 (9)N2C—N3C—C4C—C5C178.3 (8)
C5A—C4A—C11A—Se1A175.6 (7)C12C—N3C—C4C—C5C3.1 (13)
C9A—C10A—C11A—C4A81.1 (11)N3C—C4C—C5C—C6C86.5 (11)
C9A—C10A—C11A—Se1A101.2 (9)C11C—C4C—C5C—C6C90.0 (11)
N2A—Se1A—C11A—C4A0.5 (6)C4C—C5C—C6C—C7C49.6 (11)
N2A—Se1A—C11A—C10A177.5 (7)C5C—C6C—C7C—C8C53.0 (12)
C11B—Se1B—N2B—N3B0.4 (6)C6C—C7C—C8C—C9C105.9 (12)
Se1B—N2B—N3B—C4B0.3 (9)C7C—C8C—C9C—C10C75.8 (13)
Se1B—N2B—N3B—C12B179.0 (6)C8C—C9C—C10C—C11C71.6 (12)
N2B—N3B—C4B—C11B1.1 (11)N3C—C4C—C11C—C10C178.0 (9)
C12B—N3B—C4B—C11B179.7 (8)C5C—C4C—C11C—C10C1.2 (15)
N2B—N3B—C4B—C5B177.3 (7)N3C—C4C—C11C—Se1C0.4 (9)
C12B—N3B—C4B—C5B4.0 (12)C5C—C4C—C11C—Se1C177.2 (7)
C11B—C4B—C5B—C6B87.3 (10)C9C—C10C—C11C—C4C78.5 (13)
N3B—C4B—C5B—C6B88.5 (10)C9C—C10C—C11C—Se1C99.6 (10)
C4B—C5B—C6B—C7B52.3 (11)N2C—Se1C—C11C—C4C0.4 (7)
C5B—C6B—C7B—C8B50.7 (11)N2C—Se1C—C11C—C10C178.7 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221–224.  CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, R. N. & Fox, A. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 394–397.  CrossRef Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Annalen, pp. 1557–1564.  Google Scholar
First citationJaffari, G. A., Nunn, A. J. & Ralph, J. T. (1970). J. Chem. Soc. C, pp. 2060–2062.  Google Scholar
First citationJones, P. G. & De Ramírez Arellano, M. C. (1995). Chem. Ber. 128, 741–742.  CSD CrossRef CAS Google Scholar
First citationMeier, H. & Voigt, E. (1972). Tetrahedron, 28, 187–198.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds