organic compounds
Ethyl 4-(furan-2-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate: a triclinic polymorph
aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, cDepartment of Chemistry, College of Engineering, Guindy, Anna University, Chennai-25, India, dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India, and eCentre of Advanced study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: vasuki.arasi@yahoo.com
The title compound, C12H14N2O4, crystallizes in the triclinic P-1. The previously reported polymorph occurs in the monoclinic P21/c, and has two independent molecules in the [Wang (2010). Acta Cryst. E66, o2822]. The dihydropyrimidine ring adopts a screw-boat conformation. The furan ring is positioned axially and makes a dihedral angle of 85.94 (7)° with the mean plane through the pyrimidine ring. In the crystal, molecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction.
Keywords: crystal structure; pyrimidine; dihydropyrimidines; Biginelli compounds; hydrogen bonding.
CCDC reference: 1520574
Structure description
In recent years, dihydropyrimidines (DHPMs, `Biginelli compounds') and their derivatives have attracted considerable attention in synthetic organic chemistry because of their wide range of biological activities, such as antiviral, antitumor, antibacterial and anti-inflammatory properties (Kappe 2000; Kulkarni et al., 2009; Patil et al., 2011). The Biginelli reaction is a well-known multi-component reaction involving a one-pot cyclocondensation of an aldehyde, β-ketoester and urea/thiourea. Multi-component reactions (MCRs) have recently gained tremendous importance in organic and medicinal chemistry (Kulkarni et al., 2009). They are also very potent calcium channel modulators (Kappe 1998; Jauk et al., 2000). Furthermore, apart from synthetic DHPM derivatives, several marine natural products with interesting biological activities containing the dihydropyrimidine-5-carboxylate core have also been isolated. Most notable among these are the batzelladine A and B, which inhibit the binding of HIV envelope protein gp-120 to human CD4 cells and, therefore, are potential leads for AIDS therapy (Kappe, 2000). As part of our studies in this area, we have determined the of the title compound presented herein. It is one of the analogues of our previously reported DHPM structures (Suresh et al., 2015a,b; Novina et al., 2015).
In the title compound, Fig. 1, the furan ring at the chiral carbon atom C4 is positioned axially and bisects the pyrimidine ring with a dihedral angle of 85.94 (7)°. The pyrimidine ring adopts a screw-boat conformation with atoms N1 and C4 displaced by −0.1674 (10) and 0.1603 (9) Å, respectively, from the mean plane of the other atoms (C1/N2/C2/C3). The puckering parameters are q2 = 0.2446 (16) Å, q3 = 0.1048 (16) Å, Q = 0.2661 (16) Å, θ = 66.8 (3)° and φ = 327.6 (4)°. The ethyl acetate group attached to the pyrimidine ring shows an extended conformation [C3—C6—O3—C7 = −179.29 (12)°].
In the crystal, molecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif (Fig. 2 and Table 1). The dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the a–axis direction (Fig. 2 and Table 1).
Synthesis and crystallization
A mixture of ethylacetoacetate (1.3 ml, 0.01 mol), furfural (1 ml, 0.01 mol), and urea (1.8 g, 0.03 mol) in ethanol (5 ml) was heated under reflux in the presence of CeCl3·7H2O (25 mol %) for 8 h (monitored by TLC). The reaction mixture, after being cooled to room temperature, was poured onto crushed ice and stirred for 5–10 min. The precipitate was then washed with water, filtered, dried and again washed with petroleum ether (40–60%) and dried in a vacuum. The compound was recrystallized from absolute ethanol giving colourless block-like crystals [m.p. 435–438 K, yield 88%].
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1520574
https://doi.org/10.1107/S2414314616019374/su4105sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616019374/su4105Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616019374/su4105Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C12H14N2O4 | Z = 2 |
Mr = 250.25 | F(000) = 264 |
Triclinic, P1 | Dx = 1.373 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4670 (2) Å | Cell parameters from 2458 reflections |
b = 8.8307 (3) Å | θ = 2.2–26.3° |
c = 10.5426 (3) Å | µ = 0.10 mm−1 |
α = 106.833 (2)° | T = 296 K |
β = 108.557 (2)° | Block, colourless |
γ = 99.420 (2)° | 0.19 × 0.16 × 0.13 mm |
V = 605.20 (3) Å3 |
Bruker Kappa APEXII CCD diffractometer | 2458 independent reflections |
Radiation source: fine-focus sealed tube | 2116 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω and φ scan | θmax = 26.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→9 |
Tmin = 0.980, Tmax = 0.987 | k = −10→10 |
9061 measured reflections | l = −13→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0596P)2 + 0.1739P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2458 reflections | Δρmax = 0.31 e Å−3 |
166 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.010 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O4 | 0.7408 (2) | 0.90463 (16) | 0.92870 (14) | 0.0670 (4) | |
C10 | 0.5796 (3) | 0.7209 (3) | 0.9849 (2) | 0.0647 (5) | |
H10 | 0.5005 | 0.6241 | 0.9791 | 0.078* | |
C11 | 0.6772 (3) | 0.8695 (3) | 1.1090 (2) | 0.0699 (6) | |
H11 | 0.6753 | 0.8875 | 1.1999 | 0.084* | |
C12 | 0.7690 (3) | 0.9745 (3) | 1.0699 (2) | 0.0725 (6) | |
H12 | 0.8433 | 1.0821 | 1.1296 | 0.087* | |
O1 | 0.32040 (15) | 0.90923 (14) | 0.55610 (13) | 0.0463 (3) | |
N2 | 0.60593 (17) | 0.84873 (15) | 0.56522 (14) | 0.0391 (3) | |
H2 | 0.6340 | 0.9242 | 0.5326 | 0.047* | |
O2 | 1.01790 (16) | 0.58238 (15) | 0.69053 (14) | 0.0529 (3) | |
C3 | 0.71862 (19) | 0.65870 (17) | 0.66569 (15) | 0.0346 (3) | |
O3 | 0.79382 (16) | 0.45399 (13) | 0.75180 (13) | 0.0474 (3) | |
C6 | 0.8590 (2) | 0.56456 (18) | 0.70103 (16) | 0.0378 (3) | |
N1 | 0.39886 (17) | 0.70961 (15) | 0.64088 (13) | 0.0384 (3) | |
H1 | 0.2789 | 0.6658 | 0.6263 | 0.046* | |
C1 | 0.4345 (2) | 0.82776 (18) | 0.58816 (15) | 0.0354 (3) | |
C2 | 0.73651 (19) | 0.75677 (17) | 0.59092 (15) | 0.0350 (3) | |
C4 | 0.5541 (2) | 0.65133 (17) | 0.72213 (16) | 0.0354 (3) | |
H4 | 0.4969 | 0.5358 | 0.7054 | 0.042* | |
C9 | 0.6239 (2) | 0.74810 (18) | 0.87951 (16) | 0.0388 (3) | |
C7 | 0.9206 (3) | 0.3533 (2) | 0.7928 (2) | 0.0510 (4) | |
H7A | 1.0495 | 0.4230 | 0.8629 | 0.061* | |
H7B | 0.9365 | 0.2840 | 0.7093 | 0.061* | |
C5 | 0.8859 (2) | 0.7784 (2) | 0.52603 (19) | 0.0501 (4) | |
H5A | 1.0055 | 0.8581 | 0.5979 | 0.075* | |
H5B | 0.8361 | 0.8162 | 0.4486 | 0.075* | |
H5C | 0.9118 | 0.6749 | 0.4900 | 0.075* | |
C8 | 0.8261 (4) | 0.2502 (3) | 0.8552 (3) | 0.0700 (6) | |
H8A | 0.8160 | 0.3200 | 0.9399 | 0.105* | |
H8B | 0.9041 | 0.1790 | 0.8801 | 0.105* | |
H8C | 0.6969 | 0.1848 | 0.7861 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.0817 (9) | 0.0548 (8) | 0.0514 (7) | −0.0049 (7) | 0.0300 (7) | 0.0097 (6) |
C10 | 0.0792 (13) | 0.0694 (12) | 0.0645 (12) | 0.0188 (10) | 0.0445 (11) | 0.0339 (10) |
C11 | 0.0797 (14) | 0.0946 (16) | 0.0453 (10) | 0.0336 (12) | 0.0338 (10) | 0.0241 (10) |
C12 | 0.0817 (14) | 0.0704 (13) | 0.0480 (10) | 0.0099 (11) | 0.0246 (10) | 0.0043 (9) |
O1 | 0.0360 (6) | 0.0589 (7) | 0.0635 (7) | 0.0228 (5) | 0.0282 (5) | 0.0348 (6) |
N2 | 0.0326 (6) | 0.0449 (7) | 0.0532 (7) | 0.0143 (5) | 0.0248 (5) | 0.0260 (6) |
O2 | 0.0403 (6) | 0.0607 (7) | 0.0782 (8) | 0.0246 (5) | 0.0336 (6) | 0.0363 (6) |
C3 | 0.0303 (7) | 0.0343 (7) | 0.0405 (7) | 0.0091 (5) | 0.0179 (6) | 0.0110 (6) |
O3 | 0.0455 (6) | 0.0469 (6) | 0.0666 (7) | 0.0214 (5) | 0.0303 (5) | 0.0300 (6) |
C6 | 0.0362 (7) | 0.0360 (7) | 0.0431 (8) | 0.0109 (6) | 0.0196 (6) | 0.0121 (6) |
N1 | 0.0261 (6) | 0.0458 (7) | 0.0495 (7) | 0.0094 (5) | 0.0190 (5) | 0.0215 (6) |
C1 | 0.0292 (6) | 0.0404 (7) | 0.0383 (7) | 0.0100 (6) | 0.0157 (5) | 0.0138 (6) |
C2 | 0.0292 (7) | 0.0371 (7) | 0.0399 (7) | 0.0091 (6) | 0.0171 (6) | 0.0116 (6) |
C4 | 0.0320 (7) | 0.0342 (7) | 0.0470 (8) | 0.0105 (5) | 0.0211 (6) | 0.0177 (6) |
C9 | 0.0370 (7) | 0.0426 (8) | 0.0473 (8) | 0.0155 (6) | 0.0229 (6) | 0.0214 (6) |
C7 | 0.0530 (9) | 0.0506 (9) | 0.0620 (10) | 0.0262 (8) | 0.0265 (8) | 0.0274 (8) |
C5 | 0.0438 (9) | 0.0659 (11) | 0.0649 (10) | 0.0250 (8) | 0.0362 (8) | 0.0357 (9) |
C8 | 0.0852 (15) | 0.0629 (12) | 0.0862 (14) | 0.0319 (11) | 0.0446 (12) | 0.0428 (11) |
O4—C9 | 1.3575 (19) | O3—C7 | 1.4528 (19) |
O4—C12 | 1.366 (2) | N1—C1 | 1.3444 (19) |
C10—C9 | 1.328 (2) | N1—C4 | 1.4702 (18) |
C10—C11 | 1.432 (3) | N1—H1 | 0.8600 |
C10—H10 | 0.9300 | C2—C5 | 1.4967 (19) |
C11—C12 | 1.301 (3) | C4—C9 | 1.496 (2) |
C11—H11 | 0.9300 | C4—H4 | 0.9800 |
C12—H12 | 0.9300 | C7—C8 | 1.481 (3) |
O1—C1 | 1.2312 (17) | C7—H7A | 0.9700 |
N2—C1 | 1.3700 (17) | C7—H7B | 0.9700 |
N2—C2 | 1.3791 (18) | C5—H5A | 0.9600 |
N2—H2 | 0.8600 | C5—H5B | 0.9600 |
O2—C6 | 1.2152 (18) | C5—H5C | 0.9600 |
C3—C2 | 1.347 (2) | C8—H8A | 0.9600 |
C3—C6 | 1.465 (2) | C8—H8B | 0.9600 |
C3—C4 | 1.5258 (18) | C8—H8C | 0.9600 |
O3—C6 | 1.3378 (18) | ||
C9—O4—C12 | 106.82 (15) | N2—C2—C5 | 112.94 (12) |
C9—C10—C11 | 106.66 (18) | N1—C4—C9 | 109.89 (11) |
C9—C10—H10 | 126.7 | N1—C4—C3 | 109.59 (11) |
C11—C10—H10 | 126.7 | C9—C4—C3 | 113.30 (11) |
C12—C11—C10 | 106.67 (17) | N1—C4—H4 | 108.0 |
C12—C11—H11 | 126.7 | C9—C4—H4 | 108.0 |
C10—C11—H11 | 126.7 | C3—C4—H4 | 108.0 |
C11—C12—O4 | 110.45 (19) | C10—C9—O4 | 109.38 (15) |
C11—C12—H12 | 124.8 | C10—C9—C4 | 133.32 (16) |
O4—C12—H12 | 124.8 | O4—C9—C4 | 116.85 (12) |
C1—N2—C2 | 124.35 (12) | O3—C7—C8 | 107.47 (15) |
C1—N2—H2 | 117.8 | O3—C7—H7A | 110.2 |
C2—N2—H2 | 117.8 | C8—C7—H7A | 110.2 |
C2—C3—C6 | 121.82 (12) | O3—C7—H7B | 110.2 |
C2—C3—C4 | 119.48 (12) | C8—C7—H7B | 110.2 |
C6—C3—C4 | 118.62 (12) | H7A—C7—H7B | 108.5 |
C6—O3—C7 | 117.05 (12) | C2—C5—H5A | 109.5 |
O2—C6—O3 | 122.08 (14) | C2—C5—H5B | 109.5 |
O2—C6—C3 | 126.50 (14) | H5A—C5—H5B | 109.5 |
O3—C6—C3 | 111.41 (12) | C2—C5—H5C | 109.5 |
C1—N1—C4 | 123.44 (11) | H5A—C5—H5C | 109.5 |
C1—N1—H1 | 118.3 | H5B—C5—H5C | 109.5 |
C4—N1—H1 | 118.3 | C7—C8—H8A | 109.5 |
O1—C1—N1 | 123.84 (12) | C7—C8—H8B | 109.5 |
O1—C1—N2 | 120.65 (13) | H8A—C8—H8B | 109.5 |
N1—C1—N2 | 115.45 (12) | C7—C8—H8C | 109.5 |
C3—C2—N2 | 119.95 (12) | H8A—C8—H8C | 109.5 |
C3—C2—C5 | 127.10 (13) | H8B—C8—H8C | 109.5 |
C9—C10—C11—C12 | 1.0 (3) | C1—N2—C2—C3 | −12.1 (2) |
C10—C11—C12—O4 | −0.8 (3) | C1—N2—C2—C5 | 166.89 (14) |
C9—O4—C12—C11 | 0.3 (3) | C1—N1—C4—C9 | 91.93 (16) |
C7—O3—C6—O2 | −0.7 (2) | C1—N1—C4—C3 | −33.18 (18) |
C7—O3—C6—C3 | −179.29 (12) | C2—C3—C4—N1 | 20.23 (18) |
C2—C3—C6—O2 | 12.9 (2) | C6—C3—C4—N1 | −162.82 (12) |
C4—C3—C6—O2 | −163.98 (15) | C2—C3—C4—C9 | −102.90 (15) |
C2—C3—C6—O3 | −168.65 (13) | C6—C3—C4—C9 | 74.05 (16) |
C4—C3—C6—O3 | 14.48 (18) | C11—C10—C9—O4 | −0.8 (2) |
C4—N1—C1—O1 | −159.14 (14) | C11—C10—C9—C4 | −172.63 (17) |
C4—N1—C1—N2 | 23.7 (2) | C12—O4—C9—C10 | 0.3 (2) |
C2—N2—C1—O1 | −176.44 (13) | C12—O4—C9—C4 | 173.67 (15) |
C2—N2—C1—N1 | 0.8 (2) | N1—C4—C9—C10 | 96.8 (2) |
C6—C3—C2—N2 | −177.23 (12) | C3—C4—C9—C10 | −140.24 (19) |
C4—C3—C2—N2 | −0.4 (2) | N1—C4—C9—O4 | −74.56 (16) |
C6—C3—C2—C5 | 4.0 (2) | C3—C4—C9—O4 | 48.40 (18) |
C4—C3—C2—C5 | −179.20 (14) | C6—O3—C7—C8 | 175.87 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.00 | 2.855 (2) | 176 |
N1—H1···O2ii | 0.86 | 2.34 | 3.142 (2) | 156 |
C5—H5A···O1iii | 0.96 | 2.52 | 3.141 (2) | 122 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z; (iii) x+1, y, z. |
Acknowledgements
We are grateful to the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239. Web of Science CrossRef CAS Google Scholar
Kappe, C. O. (1998). Molecules, 3, 1–9. Web of Science CrossRef CAS Google Scholar
Kappe, C. O. (2000). Acc. Chem. Res. 33, 879–888. Web of Science CrossRef PubMed CAS Google Scholar
Kulkarni, M. G., Chavhan, S. W., Shinde, M. P., Gaikwad, D. D., Borhade, A. S., Dhondge, A. P., Shaikh, Y. B., Ningdale, V. B., Desai, M. P. & Birhade, D. R. (2009). Beilstein J. Org. Chem. 5, 1–4. CrossRef Google Scholar
Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2015). Acta Cryst. E71, o206–o207. Web of Science CSD CrossRef IUCr Journals Google Scholar
Patil, D. D., Mhaske, D. K., Wadhawa, G. C. & Patare, M. A. (2011). J. Pharm. Res. Opn. 6, 172–174. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suresh, M., Padusha, M. S. A., Novina, J. J., Vasuki, G., Viswanathan, V. & Velmurugan, D. (2015a). Acta Cryst. E71, 821–823. CSD CrossRef IUCr Journals Google Scholar
Suresh, M., Padusha, M. S. A., Novina, J. J., Vasuki, G., Viswanathan, V. & Velmurugan, D. (2015b). Acta Cryst. E71, o81–o82. CSD CrossRef IUCr Journals Google Scholar
Wang, H.-Y. (2010). Acta Cryst. E66, o2822. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.