organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-3-(4-Methyl­benzyl­­idene)-4-oxo­penta­noic acid

CROSSMARK_Color_square_no_text.svg

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, BP 6203, Rabat Institute, University Mohammed V, Rabat, Morocco, and bLaboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, BP 6203, Rabat Institute, University Mohammed V, Rabat, Morocco
*Correspondence e-mail: benzeid_hanane@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 8 December 2016; accepted 16 December 2016; online 20 December 2016)

The title compound, C13H14O3, a levulinic acid derivative, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The compound adopts a Z configuration about the C=C bonds in both mol­ecules. The dihedral angle between the toluene ring and the carb­oxy­lic acid group is 72.83 (7)° in mol­ecule A and 83.64 (8)° in mol­ecule B. The toluene rings are inclined to the ketone substituents by 27.03 (9)° for A and 30.84 (6)° for B. In the crystal, like mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming AA and B-B inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Levulinic acid derivatives are known to possess a wide spectrum of pharmacological activities and are used in photodynamic therapy in gastroenterology (Mordon et al. 2005[Mordon, S., Maunoury, V., Bulois, P., Ducrotté, P., Rochon, P. & Boyer, J. (2005). Gastroent. Clin. Biol. 29, 949-954.]) and as drugs for prostate cancer (Colin et al. 2011[Colin, P., Estevez, J. P., Betrouni, N., Ouzzane, A., Puech, P., Leroy, X., Biserte, J., Villers, A. & Mordon, S. (2011). Progrès en Urologie, 21, 85-92.]). They are also reactants for the synthesis of other heterocyclic compounds such as pyridazinone derivatives (Boukharsa et al. 2015[Boukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291-o292.], 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]).

In this paper we report the crystal structure determination of the title compound, Fig. 1[link], which crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angles between the toluene ring planes and the carb­oxy­lic acid groups O4/C14/O5/C15 and O1/O2/C1/C2/C3 are 72.83 (7)° in mol­ecule A and 83.64 (8)° in mol­ecule B. The toluene rings are inclined to the C16/C24/O6/C25 and C3/C11/O3/C12 ketone substituents by 27.03 (9)° for A and 30.84 (6)° for B.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

In the title compound, the C—O [1.3056 (15) and 1.2981 (13) Å] and C=O [1.2132 (16) and 1.2201 (14) Å] bond distances agree well with the values given by Allen et al. (1987[Allen, F. A., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) for a variety of carb­oxy­lic acid groups (C—O 1.308 Å and C=O 1.214 Å). The bond angles at the central C atoms in the carb­oxy­lic acid groups [O1—C1—C2 123.22 (12), O2—C1—C2 113.64 (12)° and O4–C14–C15 122.88 (10) and O5–C14–C15 123.19 (10)°] are also similar to the mean values specified by Borthwick (1980[Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.]) for a typical carb­oxy­lic acids [O2—C1—C2 123 (2)°, O1—C1—C2 112 (2)°].

In the crystal, mol­ecules are linked by pairs of O2—H2⋯O1 and O5—H5⋯O4 hydrogen bonds (Table 1[link], Figs. 2[link] and 3[link]), forming classical AA and BB carb­oxy­lic acid inversion dimers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4i 0.82 1.82 2.6310 (12) 171
O2—H2⋯O1ii 0.82 1.85 2.6714 (15) 177
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z+1.
[Figure 2]
Figure 2
A view of the pairs of AA and BB inversion dimers formed by O—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
The three-dimensional structure in the unit cell, viewed along the b axis. Hydrogen-bonding inter­actions are shown as dashed lines.

Synthesis and crystallization

An ice-cooled mixture of o-methyl­benzaldehyde (0.02 mol) and levulinic acid (0.03 mol) was saturated with dry hydrogen chloride (HCl). Then, the mixture was stirred for 24 h at room temperature. The resulting precipitate was filtered off and washed with ethyl acetate. The crude product was crystallized from ethanol to afford colourless crystals (yield = 87%; m.p. = 144°C) (Boukharsa et al. 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.], El Marrakchi et al. 2014[El Marrakchi, S., Marmouzi, I., Boukharsa, Y., EL Harti, J., Taoufik, J., Faouzi, M. E. A. & Ansar, M. (2014). J. Chem. Pharm. Res. 6, 70-74.])].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H14O3
Mr 218.25
Crystal system, space group Monoclinic, P21/a
Temperature (K) 296
a, b, c (Å) 9.2491 (5), 18.1423 (10), 14.3719 (7)
β (°) 96.610 (3)
V3) 2395.6 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.3 × 0.2 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.91, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 129996, 7673, 5039
Rint 0.078
(sin θ/λ)max−1) 0.726
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.174, 1.05
No. of reflections 7673
No. of parameters 295
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(Z)-3-(4-Methylbenzylidene)-4-oxopentanoic acid top
Crystal data top
C13H14O3F(000) = 928
Mr = 218.25Dx = 1.210 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 9.2491 (5) ÅCell parameters from 7673 reflections
b = 18.1423 (10) Åθ = 2.3–31.1°
c = 14.3719 (7) ŵ = 0.09 mm1
β = 96.610 (3)°T = 296 K
V = 2395.6 (2) Å3Block, colourless
Z = 80.3 × 0.2 × 0.15 mm
Data collection top
Bruker X8 APEX
diffractometer
7673 independent reflections
Radiation source: fine-focus sealed tube5039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 7.9 pixels mm-1θmax = 31.1°, θmin = 2.3°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2626
Tmin = 0.91, Tmax = 0.98l = 1820
129996 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0946P)2 + 0.1975P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7673 reflectionsΔρmax = 0.31 e Å3
295 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C160.13525 (12)0.70579 (6)0.12254 (8)0.0392 (2)
C140.09904 (12)0.57199 (6)0.08109 (8)0.0387 (2)
O40.00001 (11)0.58848 (5)0.02117 (7)0.0599 (3)
C170.04540 (12)0.74580 (6)0.16941 (8)0.0416 (2)
H170.03480.79490.15110.050*
O50.14539 (12)0.50486 (5)0.09445 (7)0.0624 (3)
H50.09260.47670.06130.094*
O60.28038 (12)0.69915 (6)0.00008 (8)0.0663 (3)
C150.17930 (13)0.62729 (6)0.14503 (8)0.0430 (2)
H15A0.28280.62210.14120.052*
H15B0.16220.61660.20900.052*
C180.03845 (13)0.72349 (6)0.24511 (8)0.0433 (3)
C240.20185 (13)0.73769 (7)0.04260 (8)0.0453 (3)
C190.09393 (16)0.65281 (7)0.25495 (11)0.0574 (3)
H190.07740.61660.21160.069*
C230.07381 (15)0.77700 (7)0.30853 (9)0.0518 (3)
H230.04410.82550.30170.062*
C250.17203 (18)0.81607 (8)0.01331 (11)0.0616 (4)
H25A0.06950.82250.00440.092*
H25B0.22390.82760.03900.092*
H25C0.20360.84840.06460.092*
C220.15266 (16)0.75873 (9)0.38157 (10)0.0613 (4)
H220.17350.79510.42360.074*
C210.20095 (16)0.68771 (9)0.39341 (10)0.0608 (3)
C200.17302 (18)0.63566 (9)0.32788 (12)0.0658 (4)
H200.20820.58800.33290.079*
C260.2846 (2)0.66728 (13)0.47373 (13)0.0872 (6)
H26A0.21980.64520.52290.131*
H26B0.36000.63280.45240.131*
H26C0.32730.71080.49710.131*
C30.01570 (14)1.08093 (7)0.21990 (8)0.0465 (3)
O10.06317 (11)1.04595 (6)0.41565 (7)0.0700 (3)
O20.15248 (12)0.99179 (7)0.40738 (8)0.0734 (3)
H20.12220.97940.46090.110*
C40.07038 (15)1.14814 (7)0.20654 (8)0.0488 (3)
H40.14131.14980.16570.059*
C50.03529 (15)1.21933 (7)0.24653 (9)0.0486 (3)
O30.02795 (14)0.95429 (6)0.19154 (10)0.0786 (3)
C20.10518 (14)1.06384 (8)0.27826 (9)0.0521 (3)
H2A0.15921.10880.28650.063*
H2B0.17141.02910.24440.063*
C10.05470 (14)1.03229 (7)0.37301 (9)0.0498 (3)
C110.06928 (16)1.01546 (7)0.17210 (10)0.0557 (3)
C100.04781 (18)1.28227 (8)0.19252 (11)0.0628 (4)
H100.07811.27800.13330.075*
C90.0157 (2)1.35095 (8)0.22602 (13)0.0708 (4)
H90.02281.39200.18800.085*
C60.0045 (2)1.22914 (8)0.33599 (10)0.0686 (4)
H60.01041.18850.37480.082*
C80.02629 (17)1.36043 (8)0.31340 (13)0.0656 (4)
C70.0355 (2)1.29855 (9)0.36803 (13)0.0755 (5)
H70.06321.30360.42790.091*
C120.1763 (2)1.02402 (9)0.10182 (14)0.0850 (6)
H12A0.26351.04680.13130.128*
H12B0.13451.05430.05090.128*
H12C0.19920.97640.07830.128*
C130.0593 (3)1.43579 (10)0.35049 (19)0.0979 (7)
H13A0.16001.44740.33270.147*
H13B0.00071.47190.32480.147*
H13C0.03961.43590.41750.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C160.0393 (5)0.0342 (5)0.0431 (5)0.0027 (4)0.0007 (4)0.0051 (4)
C140.0429 (5)0.0330 (5)0.0408 (5)0.0002 (4)0.0072 (4)0.0007 (4)
O40.0634 (6)0.0388 (4)0.0713 (6)0.0057 (4)0.0183 (5)0.0112 (4)
C170.0439 (6)0.0341 (5)0.0462 (6)0.0009 (4)0.0019 (4)0.0032 (4)
O50.0852 (7)0.0319 (4)0.0637 (6)0.0025 (4)0.0193 (5)0.0019 (4)
O60.0717 (7)0.0660 (6)0.0657 (6)0.0078 (5)0.0266 (5)0.0053 (5)
C150.0436 (6)0.0361 (5)0.0482 (6)0.0011 (4)0.0008 (5)0.0045 (4)
C180.0423 (6)0.0419 (6)0.0455 (6)0.0032 (4)0.0044 (5)0.0032 (4)
C240.0433 (6)0.0447 (6)0.0480 (6)0.0051 (5)0.0054 (5)0.0051 (5)
C190.0628 (8)0.0451 (7)0.0677 (8)0.0040 (6)0.0215 (7)0.0079 (6)
C230.0554 (7)0.0469 (6)0.0534 (7)0.0041 (5)0.0078 (6)0.0071 (5)
C250.0718 (9)0.0494 (7)0.0654 (8)0.0062 (6)0.0157 (7)0.0081 (6)
C220.0626 (8)0.0692 (9)0.0538 (7)0.0071 (7)0.0138 (6)0.0123 (6)
C210.0527 (7)0.0751 (9)0.0561 (8)0.0068 (7)0.0134 (6)0.0073 (7)
C200.0665 (9)0.0574 (8)0.0772 (10)0.0043 (7)0.0237 (8)0.0057 (7)
C260.0783 (11)0.1172 (16)0.0709 (11)0.0043 (11)0.0297 (9)0.0171 (10)
C30.0565 (7)0.0444 (6)0.0386 (5)0.0011 (5)0.0052 (5)0.0067 (4)
O10.0603 (6)0.0935 (8)0.0553 (5)0.0173 (5)0.0034 (5)0.0272 (5)
O20.0680 (7)0.0907 (8)0.0612 (6)0.0252 (6)0.0072 (5)0.0242 (6)
C40.0609 (7)0.0447 (6)0.0422 (6)0.0004 (5)0.0117 (5)0.0032 (5)
C50.0566 (7)0.0441 (6)0.0461 (6)0.0024 (5)0.0096 (5)0.0031 (5)
O30.0910 (8)0.0423 (5)0.1056 (9)0.0033 (5)0.0243 (7)0.0054 (5)
C20.0519 (7)0.0565 (7)0.0480 (6)0.0022 (6)0.0054 (5)0.0083 (5)
C10.0531 (7)0.0497 (6)0.0478 (6)0.0048 (5)0.0116 (5)0.0078 (5)
C110.0659 (8)0.0439 (6)0.0575 (7)0.0017 (6)0.0082 (6)0.0034 (5)
C100.0833 (10)0.0482 (7)0.0602 (8)0.0094 (7)0.0223 (7)0.0059 (6)
C90.0897 (11)0.0441 (7)0.0804 (10)0.0052 (7)0.0169 (9)0.0099 (7)
C60.1076 (13)0.0497 (7)0.0519 (8)0.0014 (7)0.0235 (8)0.0034 (6)
C80.0626 (9)0.0484 (7)0.0857 (10)0.0020 (6)0.0081 (8)0.0074 (7)
C70.1064 (14)0.0575 (9)0.0670 (9)0.0010 (8)0.0295 (9)0.0100 (7)
C120.1175 (15)0.0563 (9)0.0903 (12)0.0036 (9)0.0507 (11)0.0076 (8)
C130.1082 (15)0.0555 (9)0.1306 (18)0.0096 (10)0.0164 (13)0.0239 (10)
Geometric parameters (Å, º) top
C16—C171.3417 (16)C3—C41.3424 (17)
C16—C151.5061 (15)C3—C21.5052 (18)
C16—C241.4823 (17)C3—C111.4854 (18)
C14—O41.2201 (14)O1—C11.2132 (16)
C14—O51.2981 (13)O2—H20.8200
C14—C151.4984 (15)O2—C11.3056 (15)
C17—H170.9300C4—H40.9300
C17—C181.4639 (17)C4—C51.4651 (17)
O5—H50.8200C5—C101.3931 (18)
O6—C241.2215 (15)C5—C61.3890 (19)
C15—H15A0.9700O3—C111.2166 (16)
C15—H15B0.9700C2—H2A0.9700
C18—C191.3943 (17)C2—H2B0.9700
C18—C231.3960 (17)C2—C11.5012 (18)
C24—C251.4995 (18)C11—C121.501 (2)
C19—H190.9300C10—H100.9300
C19—C201.381 (2)C10—C91.380 (2)
C23—H230.9300C9—H90.9300
C23—C221.386 (2)C9—C81.367 (2)
C25—H25A0.9600C6—H60.9300
C25—H25B0.9600C6—C71.382 (2)
C25—H25C0.9600C8—C71.378 (2)
C22—H220.9300C8—C131.511 (2)
C22—C211.381 (2)C7—H70.9300
C21—C201.379 (2)C12—H12A0.9600
C21—C261.508 (2)C12—H12B0.9600
C20—H200.9300C12—H12C0.9600
C26—H26A0.9600C13—H13A0.9600
C26—H26B0.9600C13—H13B0.9600
C26—H26C0.9600C13—H13C0.9600
C17—C16—C15124.87 (11)C4—C3—C2125.67 (12)
C17—C16—C24120.97 (10)C4—C3—C11120.59 (12)
C24—C16—C15114.16 (10)C11—C3—C2113.69 (11)
O4—C14—O5122.88 (10)C1—O2—H2109.5
O4—C14—C15123.19 (10)C3—C4—H4115.1
O5—C14—C15113.93 (10)C3—C4—C5129.83 (12)
C16—C17—H17115.3C5—C4—H4115.1
C16—C17—C18129.44 (11)C10—C5—C4117.89 (12)
C18—C17—H17115.3C6—C5—C4124.78 (11)
C14—O5—H5109.5C6—C5—C10117.29 (13)
C16—C15—H15A108.9C3—C2—H2A108.7
C16—C15—H15B108.9C3—C2—H2B108.7
C14—C15—C16113.50 (9)H2A—C2—H2B107.6
C14—C15—H15A108.9C1—C2—C3114.24 (11)
C14—C15—H15B108.9C1—C2—H2A108.7
H15A—C15—H15B107.7C1—C2—H2B108.7
C19—C18—C17124.22 (11)O1—C1—O2123.04 (12)
C19—C18—C23117.17 (12)O1—C1—C2123.22 (11)
C23—C18—C17118.48 (11)O2—C1—C2113.64 (12)
C16—C24—C25120.56 (11)C3—C11—C12120.61 (12)
O6—C24—C16119.23 (11)O3—C11—C3119.53 (13)
O6—C24—C25120.20 (12)O3—C11—C12119.85 (13)
C18—C19—H19119.4C5—C10—H10119.6
C20—C19—C18121.16 (13)C9—C10—C5120.71 (14)
C20—C19—H19119.4C9—C10—H10119.6
C18—C23—H23119.6C10—C9—H9119.0
C22—C23—C18120.77 (13)C8—C9—C10121.94 (14)
C22—C23—H23119.6C8—C9—H9119.0
C24—C25—H25A109.5C5—C6—H6119.6
C24—C25—H25B109.5C7—C6—C5120.82 (14)
C24—C25—H25C109.5C7—C6—H6119.6
H25A—C25—H25B109.5C9—C8—C7117.62 (14)
H25A—C25—H25C109.5C9—C8—C13121.87 (16)
H25B—C25—H25C109.5C7—C8—C13120.51 (17)
C23—C22—H22119.2C6—C7—H7119.2
C21—C22—C23121.50 (13)C8—C7—C6121.57 (15)
C21—C22—H22119.2C8—C7—H7119.2
C22—C21—C26121.71 (16)C11—C12—H12A109.5
C20—C21—C22117.79 (13)C11—C12—H12B109.5
C20—C21—C26120.49 (16)C11—C12—H12C109.5
C19—C20—H20119.3H12A—C12—H12B109.5
C21—C20—C19121.42 (14)H12A—C12—H12C109.5
C21—C20—H20119.3H12B—C12—H12C109.5
C21—C26—H26A109.5C8—C13—H13A109.5
C21—C26—H26B109.5C8—C13—H13B109.5
C21—C26—H26C109.5C8—C13—H13C109.5
H26A—C26—H26B109.5H13A—C13—H13B109.5
H26A—C26—H26C109.5H13A—C13—H13C109.5
H26B—C26—H26C109.5H13B—C13—H13C109.5
C16—C17—C18—C1931.0 (2)C3—C4—C5—C10148.97 (15)
C16—C17—C18—C23153.27 (13)C3—C4—C5—C633.5 (2)
O4—C14—C15—C165.22 (17)C3—C2—C1—O128.9 (2)
C17—C16—C15—C14101.54 (13)C3—C2—C1—O2154.42 (12)
C17—C16—C24—O6178.25 (12)C4—C3—C2—C1101.98 (15)
C17—C16—C24—C251.01 (17)C4—C3—C11—O3173.44 (14)
C17—C18—C19—C20179.59 (14)C4—C3—C11—C125.2 (2)
C17—C18—C23—C22179.83 (12)C4—C5—C10—C9179.70 (15)
O5—C14—C15—C16174.08 (10)C4—C5—C6—C7179.85 (16)
C15—C16—C17—C185.48 (19)C5—C10—C9—C81.4 (3)
C15—C16—C24—O62.48 (16)C5—C6—C7—C80.9 (3)
C15—C16—C24—C25178.26 (11)C2—C3—C4—C53.4 (2)
C18—C19—C20—C210.4 (2)C2—C3—C11—O39.04 (19)
C18—C23—C22—C211.1 (2)C2—C3—C11—C12172.34 (15)
C24—C16—C17—C18175.34 (11)C11—C3—C4—C5179.38 (13)
C24—C16—C15—C1479.23 (12)C11—C3—C2—C180.64 (15)
C19—C18—C23—C224.2 (2)C10—C5—C6—C72.4 (3)
C23—C18—C19—C203.8 (2)C10—C9—C8—C70.2 (3)
C23—C22—C21—C202.4 (2)C10—C9—C8—C13179.10 (18)
C23—C22—C21—C26178.96 (15)C9—C8—C7—C60.4 (3)
C22—C21—C20—C192.8 (2)C6—C5—C10—C92.6 (2)
C26—C21—C20—C19178.59 (16)C13—C8—C7—C6179.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.821.822.6310 (12)171
O2—H2···O1ii0.821.852.6714 (15)177
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1.
 

References

First citationAllen, F. A., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Google Scholar
First citationBorthwick, P. W. (1980). Acta Cryst. B36, 628–632.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBoukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291–o292.  CSD CrossRef IUCr Journals Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColin, P., Estevez, J. P., Betrouni, N., Ouzzane, A., Puech, P., Leroy, X., Biserte, J., Villers, A. & Mordon, S. (2011). Progrès en Urologie, 21, 85–92.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Marrakchi, S., Marmouzi, I., Boukharsa, Y., EL Harti, J., Taoufik, J., Faouzi, M. E. A. & Ansar, M. (2014). J. Chem. Pharm. Res. 6, 70–74.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMordon, S., Maunoury, V., Bulois, P., Ducrotté, P., Rochon, P. & Boyer, J. (2005). Gastroent. Clin. Biol. 29, 949–954.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds