organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(5-Chloro­thio­phen-2-yl)-3-(2,4-di­methyl­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, muneer@najah.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 6 December 2016; accepted 10 December 2016; online 13 December 2016)

In the title compound, C15H13ClOS, the olefinic double bond adopts an E configuration. The mol­ecule is nearly planar, as seen by the dihedral angle of 9.07 (8)° between the thio­phene and phenyl rings. The trans configuration of the C=C double bond in the central enone group is confirmed by the C—C=C—C torsion angle of 177.6 (2)°. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯S hydrogen bonds, forming chains propagating along the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones form the central cores for the construction of variety of bioactive mol­ecules (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]). The most commonly employed method for the synthesis of chalcones involves the condensation of an aromatic aldehyde and an aromatic ketone in the presence of aqueous alkaline bases (Mahapatra et al., 2015[Mahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839-865.]). In view of the broad spectrum of applications associated with chalcones and as a part of our ongoing work on such mol­ecules (Tejkiran et al., 2016[Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33-39.]), we report here the synthesis and crystal structure of the title compound.

The title mol­ecule (Fig. 1[link]) is nearly planar, with a dihedral angle of 9.07 (8)° between the thio­phene and phenyl rings that are bridged by the olefinic double bond. This value is less than the value of 19.13 (15)° reported earlier between the aromatic rings in the related chalcone derivative (E)-3-(2,3-di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]). The trans configuration about the C6=C7 double bond in the central enone group is confirmed by the C5—C6=C75—C8 torsion angle, 177.6 (2)°. The carbonyl group at C5 lies in the plane of the olefinic double bond and thio­phene ring as indicated by the S1—C4—C5—O1 [1.2 (3)°] and O1—C5—C6—C7 [−4.7 (3)°] torsion angles.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the crystal, the mol­ecules are linked via weak C—H⋯O and C—H⋯S hydrogen bonds, forming chains propagating along the c axis (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.48 3.400 (3) 169
C3—H3⋯S1i 0.93 2.90 3.459 (2) 120
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of the mol­ecules viewed along the b axis, with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

A mixture of 1-(5-chloro­thio­phen-2-yl)ethanone (5 mmol), 2,4-di­methyl­benzaldehyde (5 mmol) and potassium hydroxide (5 mmol) in 95% ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After completion, the reaction mixture was poured in to ice-cold water and kept in the refrigerator overnight. The solid that formed was filtered, and washed with cold methanol (5%) to obtain the crude product. Pure green crystals of the title compound were obtained by crystallization from methanol by the slow evaporation technique, m.p. 98–100°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H13ClOS
Mr 276.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 15.588 (2), 7.4306 (11), 11.4165 (17)
β (°) 94.293 (3)
V3) 1318.6 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.90
Crystal size (mm) 0.29 × 0.26 × 0.23
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.397, 0.467
No. of measured, independent and observed [I > 2σ(I)] reflections 9075, 2149, 2120
Rint 0.050
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.148, 1.11
No. of reflections 2149
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.87
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-1-(5-Chlorothiophen-2-yl)-3-(2,4-dimethylphenyl)prop-2-en-1-one top
Crystal data top
C15H13ClOSF(000) = 576
Mr = 276.77Dx = 1.394 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2120 reflections
a = 15.588 (2) Åθ = 5.7–64.2°
b = 7.4306 (11) ŵ = 3.90 mm1
c = 11.4165 (17) ÅT = 296 K
β = 94.293 (3)°Rectangle, green
V = 1318.6 (3) Å30.29 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2149 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2120 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.050
Detector resolution: 18.4 pixels mm-1θmax = 64.2°, θmin = 5.7°
φ and ω scansh = 1817
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 78
Tmin = 0.397, Tmax = 0.467l = 1213
9075 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1085P)2 + 0.5955P]
where P = (Fo2 + 2Fc2)/3
2149 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.87 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22467 (3)0.94779 (7)0.40476 (4)0.0210 (2)
S10.39687 (3)0.81834 (7)0.35033 (4)0.0179 (2)
O10.57439 (10)0.7025 (2)0.32391 (14)0.0240 (5)
C10.32622 (13)0.8762 (3)0.45189 (19)0.0163 (6)
C20.36001 (14)0.8625 (3)0.56508 (19)0.0181 (6)
C30.44560 (15)0.8010 (3)0.5701 (2)0.0174 (6)
C40.47497 (13)0.7695 (3)0.46152 (19)0.0155 (6)
C50.56000 (14)0.7119 (3)0.42881 (19)0.0170 (6)
C60.62517 (14)0.6691 (3)0.5239 (2)0.0172 (6)
C70.70203 (14)0.6053 (3)0.49961 (19)0.0179 (7)
C80.77481 (14)0.5622 (3)0.58247 (19)0.0163 (7)
C90.77421 (14)0.6023 (3)0.7026 (2)0.0187 (6)
C100.84389 (15)0.5652 (3)0.7802 (2)0.0192 (7)
C110.91834 (14)0.4879 (3)0.7412 (2)0.0185 (6)
C120.91894 (14)0.4460 (3)0.6227 (2)0.0185 (7)
C130.84913 (14)0.4818 (3)0.5421 (2)0.0173 (6)
C140.85383 (15)0.4288 (3)0.4153 (2)0.0218 (7)
C150.99642 (15)0.4547 (3)0.8251 (2)0.0232 (7)
H20.330400.890100.630500.0220*
H30.479000.783400.640100.0210*
H60.613000.686400.601600.0210*
H70.710000.586100.420700.0210*
H90.725600.655100.730400.0220*
H100.841400.591900.859500.0230*
H120.967600.392000.596000.0220*
H14A0.909300.378000.404600.0330*
H14B0.845100.533100.366300.0330*
H14C0.810000.341400.394200.0330*
H15A1.027900.353600.798400.0350*
H15B0.978400.430100.902000.0350*
H15C1.032600.559500.828100.0350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0149 (4)0.0250 (4)0.0222 (4)0.0028 (2)0.0046 (2)0.0022 (2)
S10.0155 (4)0.0266 (4)0.0112 (4)0.0009 (2)0.0024 (2)0.0011 (2)
O10.0188 (9)0.0397 (10)0.0134 (9)0.0036 (7)0.0011 (6)0.0022 (6)
C10.0136 (10)0.0163 (11)0.0185 (11)0.0008 (8)0.0014 (8)0.0001 (8)
C20.0175 (11)0.0218 (11)0.0151 (11)0.0002 (9)0.0013 (8)0.0008 (9)
C30.0175 (11)0.0199 (11)0.0141 (11)0.0009 (8)0.0025 (9)0.0031 (8)
C40.0152 (11)0.0147 (10)0.0160 (11)0.0026 (8)0.0022 (8)0.0004 (8)
C50.0171 (11)0.0177 (10)0.0159 (11)0.0031 (8)0.0011 (9)0.0018 (8)
C60.0171 (11)0.0201 (11)0.0142 (11)0.0006 (8)0.0006 (9)0.0006 (8)
C70.0202 (12)0.0187 (11)0.0148 (11)0.0020 (9)0.0014 (9)0.0005 (9)
C80.0155 (12)0.0150 (11)0.0182 (11)0.0034 (8)0.0005 (9)0.0016 (8)
C90.0179 (11)0.0194 (11)0.0189 (11)0.0003 (8)0.0027 (9)0.0007 (9)
C100.0221 (12)0.0192 (11)0.0161 (11)0.0040 (8)0.0001 (9)0.0001 (8)
C110.0182 (11)0.0131 (10)0.0237 (12)0.0046 (8)0.0021 (9)0.0036 (9)
C120.0155 (11)0.0143 (11)0.0258 (13)0.0005 (8)0.0016 (9)0.0009 (8)
C130.0175 (11)0.0143 (10)0.0202 (12)0.0035 (8)0.0022 (9)0.0001 (8)
C140.0204 (12)0.0241 (12)0.0211 (12)0.0015 (8)0.0032 (10)0.0031 (9)
C150.0228 (12)0.0198 (12)0.0258 (13)0.0007 (9)0.0060 (10)0.0011 (9)
Geometric parameters (Å, º) top
Cl1—C11.718 (2)C11—C151.512 (3)
S1—C11.713 (2)C12—C131.397 (3)
S1—C41.730 (2)C13—C141.507 (3)
O1—C51.237 (3)C2—H20.9300
C1—C21.362 (3)C3—H30.9300
C2—C31.407 (3)C6—H60.9300
C3—C41.373 (3)C7—H70.9300
C4—C51.468 (3)C9—H90.9300
C5—C61.465 (3)C10—H100.9300
C6—C71.337 (3)C12—H120.9300
C7—C81.457 (3)C14—H14A0.9600
C8—C91.404 (3)C14—H14B0.9600
C8—C131.411 (3)C14—H14C0.9600
C9—C101.377 (3)C15—H15A0.9600
C10—C111.397 (3)C15—H15B0.9600
C11—C121.389 (3)C15—H15C0.9600
C1—S1—C490.50 (10)C1—C2—H2124.00
Cl1—C1—S1119.33 (13)C3—C2—H2124.00
Cl1—C1—C2127.02 (17)C2—C3—H3123.00
S1—C1—C2113.63 (16)C4—C3—H3123.00
C1—C2—C3111.2 (2)C5—C6—H6120.00
C2—C3—C4113.4 (2)C7—C6—H6120.00
S1—C4—C3111.27 (16)C6—C7—H7116.00
S1—C4—C5118.28 (16)C8—C7—H7116.00
C3—C4—C5130.4 (2)C8—C9—H9119.00
O1—C5—C4119.7 (2)C10—C9—H9119.00
O1—C5—C6122.6 (2)C9—C10—H10120.00
C4—C5—C6117.65 (19)C11—C10—H10120.00
C5—C6—C7120.4 (2)C11—C12—H12119.00
C6—C7—C8127.6 (2)C13—C12—H12119.00
C7—C8—C9121.7 (2)C13—C14—H14A110.00
C7—C8—C13120.0 (2)C13—C14—H14B110.00
C9—C8—C13118.3 (2)C13—C14—H14C109.00
C8—C9—C10121.6 (2)H14A—C14—H14B109.00
C9—C10—C11120.7 (2)H14A—C14—H14C109.00
C10—C11—C12118.0 (2)H14B—C14—H14C109.00
C10—C11—C15120.9 (2)C11—C15—H15A109.00
C12—C11—C15121.1 (2)C11—C15—H15B110.00
C11—C12—C13122.5 (2)C11—C15—H15C109.00
C8—C13—C12118.9 (2)H15A—C15—H15B109.00
C8—C13—C14121.6 (2)H15A—C15—H15C109.00
C12—C13—C14119.4 (2)H15B—C15—H15C109.00
C4—S1—C1—Cl1179.60 (15)C6—C7—C8—C96.7 (4)
C4—S1—C1—C20.98 (19)C6—C7—C8—C13174.8 (2)
C1—S1—C4—C30.93 (18)C7—C8—C9—C10178.5 (2)
C1—S1—C4—C5178.14 (18)C13—C8—C9—C100.1 (3)
Cl1—C1—C2—C3179.26 (17)C7—C8—C13—C12178.4 (2)
S1—C1—C2—C30.8 (3)C7—C8—C13—C143.5 (3)
C1—C2—C3—C40.0 (3)C9—C8—C13—C120.2 (3)
C2—C3—C4—S10.7 (3)C9—C8—C13—C14177.9 (2)
C2—C3—C4—C5177.5 (2)C8—C9—C10—C110.8 (3)
S1—C4—C5—O11.2 (3)C9—C10—C11—C121.5 (3)
S1—C4—C5—C6179.34 (16)C9—C10—C11—C15177.2 (2)
C3—C4—C5—O1175.4 (2)C10—C11—C12—C131.4 (3)
C3—C4—C5—C64.1 (4)C15—C11—C12—C13177.3 (2)
O1—C5—C6—C74.7 (3)C11—C12—C13—C80.5 (3)
C4—C5—C6—C7175.9 (2)C11—C12—C13—C14178.7 (2)
C5—C6—C7—C8177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.483.400 (3)169
C3—H3···S1i0.932.903.459 (2)120
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839–865.  CrossRef CAS Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33–39.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds