organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9,9-Di­ethyl-7-ethynyl-N,N-di­phenyl-9H-fluoren-2-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, and cOrganic Materials Lab, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 3 December 2016; accepted 16 December 2016; online 22 December 2016)

In the title compound, C31H27N, the fluorene unit is approximately planar (r.m.s deviation = 0.0255 Å). The dihedral angles between the fluorene fused ring system and two phenyl rings are 88.37 (5) and 66.31 (6)°. Weak inter­molecular C—H⋯π(ring) inter­actions help to stabilize the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Materials with enhanced two-photon absorption (TPA) properties have attracted considerable research inter­est in recent years due to their potential applications in photonics and optoelectronics. Optical limiting, two-photon microscopy, upconverted lasing, three-dimensional microfabrication and optical data storage constitute other important applications of TPA materials (Fitilis et al., 2007[Fitilis, I., Fakis, M., Polyzos, I., Giannetas, V., Persephonis, P., Vellis, P. & Mikroyannidis, J. (2007). Chem. Phys. Lett. 447, 300-304.]). Fluorene-based materials, such as terfluorenes, oligofluorenes, and polyfluorenes have emerged as promising candidates for OLEDs due to their high photoluminescence (PL) and electroluminescence (EL) efficiencies, good thermal stability and color tunability across the full visible range (Omer et al., 2009[Omer, K. M., Ku, S. Y., Wong, K.-T. & Bard, A. J. (2009). J. Am. Chem. Soc. 131, 10733-10741.]). Di­phenyl­amino­fluorene-based organic dyes with acetyl­ene/vinyl linkages have been explored as potential candidates for applications in dye-sensitized solar cells, organic light-emitting diodes and non-linear optics, see: Singh et al. (2012[Singh, P., Baheti, A., Thomas, K. R. J., Lee, C.-P. & Ho, K.-C. (2012). Dyes Pigments, 95, 523-533.]); Thomas et al. (2012[Thomas, K. R. J., Kapoor, N., Bolisetty, M. N. K. P., Jou, J.-H., Chen, Y.-L. & Jou, Y.-C. (2012). J. Org. Chem. 77, 3921-3932.]); Rogers et al. (2007[Rogers, J. E., Slagle, J. E., Krein, D. M., Burke, A. R., Hall, B. C., Fratini, A., McLean, D. G., Fleitz, P. A., Cooper, T. M., Drobizhev, M., Makarov, S. N., Rebane, A., Kim, K. Y., Farley, R. & Schanze, K. S. (2007). Inorg. Chem. 46, 6483-6494.]). The structures of several compounds related to the title compound have been determined, see for example: Belfield et al. (1999[Belfield, K. D., Hagan, D. J., Van Stryland, E. W., Schafer, K. J. & Negres, R. A. (1999). Org. Lett. 1, 1575-1578.]); Liu et al. (2012[Liu, R., Zhou, D., Azenkeng, A., Li, Z., Li, Y., Glusac, K. D. & Sun, W. (2012). Chem. Eur. J. 18, 11440-11448.]); Liao et al. (2010[Liao, C., Yarnell, J. E., Glusac, K. D. & Schanze, K. S. (2010). J. Phys. Chem. B, 114, 14763-14771.]); Shelton et al. (2013[Shelton, A. H., Price, R. S., Brokmann, L., Dettlaff, B. & Schanze, K. S. (2013). Appl. Mater. Interfaces, 5, 7867-7874.]).

The title compound, 9,9-diethyl-7-ethynyl-N,N-diphenyl-9H-fluoren-2-amine was synthesized by a two-step protocol involving the Sonogashira coupling of 2-methyl­but-3-yn-2-ol with the corresponding aryl bromide and the base-catalysed cleavage of the resulting functionalized but-3-yn-2-ol. In view of the potential importance of this material in the applications mentioned previously, the crystal structure determination was carried out and the results are presented here. The mol­ecular structure of the title compound is shown in Fig. 1[link]. The fluorene moiety is almost planar with maximum deviation of 0.0447 (15) Å for C2 and a root mean square deviation of 0.0255 Å from the best-fit plane through all 13 non-hydrogen atoms. The fluorene fused ring system (C1–C13) makes dihedral angles of 88.37 (5) and 66.31 (6)°, respectively, with the phenyl rings (C20–C25) and (C26–C31). The dihedral angle between the phenyl rings is 61.28 (7)°. The sum of the bond angles around N1 (359.86°) indicates that the N1 atom exhibits sp2 hybridization. The widening of the exocyclic angles C4—C11—C12 [131.22 (19)°] and C11—C12—C5 [130.6 (2)°] that deviate significantly from the expected value of 120°, might be due to the repulsion between H4 at C4 and H5 at C5 (H4⋯H5 = 2.692 Å). The torsion angle C8—C7—C18—C19 [−148 (10)°] indicates that the ethynyl group is in a (−)anti­clinal (−ac) orientation with with respect to the (C5–C8/C13/C12) ring of the fluorene ring system. The ethyl substituents on the five-membered ring of the fluorene moiety are in (−)synclinal (−sc) which is evident from the torsion angles C10—C9—C16—C17 = −51.9 (2)° and C13—C9—C14—C15 = −51.7 (2)°. While no classical hydrogen bonds are present, two weak inter­molecular C—H⋯π inter­actions contribute to the stability of the crystal packing (Table 1[link], Fig2. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C26–C31 phenyl ring and Cg2 is the centroid of the C5–C8/C13/C12 phenyl ring of the fluorene moiety.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.76 3.508 (3) 138
C30—H30⋯Cg2ii 0.93 2.94 3.764 (2) 149
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis.
[Figure 3]
Figure 3
Part of the crystal packing of the title compound, showing the C—H⋯π inter­actions

Synthesis and crystallization

A mixture of 7-bromo-9,9-diethyl-N,N-diphenyl-9H-fluoren-2-amine (5.0 g, 10.68 mmol), 2-methyl­but-3-yn-2-ol (1.07 g,12.8 mmol), Pd(PPh3)2Cl2 (75 mg, 0.11 mmol), PPh3 (56 mg, 0.21 mmol), and CuI (21 mg, 0.11 mmol) were mixed in tri­ethyl­amine (100 ml) under a nitro­gen atmosphere. The resulting mixture was heated and stirred at 373 K for 24 h. After completion of the reaction, the mixture was poured into water and extracted with ethyl acetate. The organic extract was washed with brine solution and dried over Na2SO4. Finally, the solvent was removed under vacuum to yield a yellow residue, which was purified by column chromatography as a yellow liquid (5.2 g, 55%), that underwent a further cleavage reaction on treatment with KOH (in toluene to produce the title acetyl­ene as a yellow solid. Yield 71%; m.p. 393–395 K.

1H NMR (500 MHz, CDCl3) δ 0.35 (t, J = 7.5 Hz, 6 H), 1.95–1.87 (m, 4 H), 3.12 (s, 1 H), 7.05–7.01 (m, 3 H), 7.09 (d, J = 2.0 Hz, 1 H), 7.13–7.11 (m, 4 H), 7.28–7.25 (m, 4 H), 7.42 (d, J = 1.0 Hz, 1 H), 7.46 (dd, J = 6.5, 1.5 Hz, 1 H), 7.57–7.55 (m, 2 H); 13C NMR (125 MHz, CDCl3) δ 151.7, 149.9, 147.9, 147.8, 142.2, 135.7, 131.3, 126.5, 123.5, 122.7, 120.8, 119.3, 119.0, 118.9, 84.8, 56.1, 32.6, 8.5. HRMS calculated for C31H27N [M+] m/z 413.2138 found 413.2123.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One low angle reflection affected by the beamstop was omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula C31H27N
Mr 413.54
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.7365 (7), 10.5803 (9), 18.6662 (11)
β (°) 106.531 (3)
V3) 2411.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.974, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 17899, 5915, 2979
Rint 0.039
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.181, 0.98
No. of reflections 5915
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.16
Computer programs: APEX2, SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

9,9-Diethyl-7-ethynyl-N,N-diphenyl-9H-fluoren-2-amine top
Crystal data top
C31H27NF(000) = 880
Mr = 413.54Dx = 1.139 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5915 reflections
a = 12.7365 (7) Åθ = 2.3–28.4°
b = 10.5803 (9) ŵ = 0.07 mm1
c = 18.6662 (11) ÅT = 296 K
β = 106.531 (3)°Block, yellow
V = 2411.4 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5915 independent reflections
Radiation source: fine-focus sealed tube2979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scanθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.974, Tmax = 0.987k = 1113
17899 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0937P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5915 reflectionsΔρmax = 0.23 e Å3
290 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0103 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C210.55085 (16)0.2135 (2)1.03753 (10)0.0643 (6)
H210.55080.15281.07350.077*
C220.64185 (16)0.2875 (3)1.04460 (12)0.0740 (7)
H220.70340.27561.08510.089*
C230.64316 (17)0.3774 (3)0.99344 (14)0.0766 (7)
H230.70510.42710.99880.092*
C240.55307 (17)0.3948 (2)0.93396 (12)0.0768 (7)
H240.55370.45680.89880.092*
C250.46098 (16)0.3210 (2)0.92554 (10)0.0644 (6)
H250.39980.33360.88480.077*
C200.45945 (14)0.2291 (2)0.97722 (9)0.0505 (5)
C270.36126 (15)0.0663 (2)0.84942 (10)0.0546 (5)
H270.43320.09190.85600.066*
C280.30536 (17)0.0053 (2)0.78493 (10)0.0608 (5)
H280.34000.00940.74810.073*
C290.19913 (17)0.0347 (2)0.77381 (11)0.0640 (6)
H290.16180.07520.72970.077*
C300.14928 (16)0.0136 (2)0.82890 (11)0.0642 (6)
H300.07810.04190.82250.077*
C310.20344 (14)0.0488 (2)0.89339 (10)0.0562 (5)
H310.16800.06370.92980.067*
C260.31065 (14)0.08984 (19)0.90484 (9)0.0474 (4)
C20.32513 (15)0.1446 (2)1.03489 (9)0.0538 (5)
C10.31211 (14)0.0285 (2)1.06600 (9)0.0514 (5)
H10.33270.04571.04700.062*
C100.26812 (14)0.02479 (19)1.12564 (9)0.0477 (5)
C110.23914 (14)0.1362 (2)1.15521 (9)0.0518 (5)
C40.25459 (17)0.2518 (2)1.12523 (11)0.0687 (6)
H40.23650.32641.14520.082*
C30.29750 (17)0.2546 (2)1.06483 (11)0.0682 (6)
H30.30780.33201.04420.082*
C90.24326 (14)0.0910 (2)1.16669 (9)0.0520 (5)
C160.16364 (17)0.1821 (2)1.11368 (11)0.0719 (6)
H16A0.20130.22111.08100.086*
H16B0.14410.24871.14320.086*
C170.06195 (19)0.1228 (3)1.06713 (14)0.0999 (9)
H17A0.01730.18571.03560.150*
H17B0.08000.05791.03670.150*
H17C0.02250.08631.09880.150*
C140.34677 (18)0.1643 (3)1.20693 (12)0.0773 (7)
H14A0.32550.23751.23080.093*
H14B0.38070.19491.16980.093*
C150.43024 (18)0.0919 (3)1.26448 (13)0.0985 (9)
H15A0.49170.14551.28660.148*
H15B0.39860.06301.30250.148*
H15C0.45410.02051.24150.148*
C130.19257 (14)0.0270 (2)1.22260 (9)0.0509 (5)
C80.15084 (14)0.0827 (2)1.27558 (10)0.0600 (5)
H80.15020.17021.28000.072*
C70.10976 (15)0.0069 (3)1.32245 (10)0.0622 (6)
C60.11196 (16)0.1229 (3)1.31574 (10)0.0693 (7)
H60.08590.17291.34790.083*
C50.15192 (16)0.1802 (2)1.26230 (10)0.0660 (6)
H50.15170.26771.25760.079*
C120.19252 (14)0.1035 (2)1.21568 (9)0.0518 (5)
C180.06541 (18)0.0628 (3)1.37757 (12)0.0861 (8)
C190.0276 (3)0.1050 (4)1.42180 (17)0.1355 (14)
H190.00280.13901.45730.163*
N10.36621 (12)0.15140 (17)0.97122 (7)0.0590 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C210.0670 (12)0.0672 (16)0.0527 (11)0.0011 (11)0.0077 (9)0.0075 (10)
C220.0524 (12)0.0841 (19)0.0727 (13)0.0025 (12)0.0028 (10)0.0065 (13)
C230.0582 (13)0.0771 (19)0.0940 (16)0.0180 (12)0.0205 (12)0.0110 (14)
C240.0750 (15)0.0739 (18)0.0801 (14)0.0177 (12)0.0196 (12)0.0172 (13)
C250.0574 (11)0.0753 (16)0.0556 (11)0.0088 (11)0.0083 (9)0.0125 (11)
C200.0503 (10)0.0575 (14)0.0459 (9)0.0052 (9)0.0173 (8)0.0029 (9)
C270.0548 (10)0.0615 (14)0.0500 (10)0.0019 (9)0.0188 (8)0.0014 (9)
C280.0759 (13)0.0580 (14)0.0529 (10)0.0068 (11)0.0257 (10)0.0049 (10)
C290.0744 (13)0.0572 (15)0.0549 (11)0.0053 (11)0.0094 (10)0.0105 (10)
C300.0560 (11)0.0712 (16)0.0619 (12)0.0090 (10)0.0108 (10)0.0009 (11)
C310.0530 (11)0.0673 (15)0.0501 (10)0.0038 (9)0.0174 (8)0.0016 (9)
C260.0512 (10)0.0503 (12)0.0418 (8)0.0019 (8)0.0150 (7)0.0035 (8)
C20.0601 (11)0.0611 (14)0.0441 (9)0.0130 (9)0.0211 (8)0.0031 (9)
C10.0587 (11)0.0550 (13)0.0443 (9)0.0039 (9)0.0206 (8)0.0038 (9)
C100.0529 (10)0.0531 (13)0.0386 (8)0.0046 (9)0.0154 (7)0.0011 (8)
C110.0606 (11)0.0532 (14)0.0462 (9)0.0104 (9)0.0226 (8)0.0066 (9)
C40.0982 (16)0.0506 (15)0.0712 (13)0.0120 (12)0.0465 (12)0.0089 (11)
C30.0951 (15)0.0522 (14)0.0692 (12)0.0147 (11)0.0427 (12)0.0003 (11)
C90.0597 (11)0.0541 (13)0.0463 (9)0.0010 (9)0.0214 (8)0.0038 (9)
C160.0879 (15)0.0630 (16)0.0703 (13)0.0146 (12)0.0315 (12)0.0076 (11)
C170.0784 (17)0.120 (3)0.0949 (17)0.0123 (16)0.0142 (14)0.0243 (17)
C140.0819 (15)0.0798 (19)0.0796 (14)0.0173 (13)0.0384 (12)0.0197 (13)
C150.0623 (14)0.149 (3)0.0800 (15)0.0118 (16)0.0137 (12)0.0062 (17)
C130.0496 (10)0.0641 (15)0.0393 (9)0.0024 (9)0.0132 (8)0.0036 (9)
C80.0587 (11)0.0731 (16)0.0501 (10)0.0004 (10)0.0182 (9)0.0124 (10)
C70.0539 (11)0.0919 (19)0.0427 (10)0.0035 (11)0.0168 (8)0.0059 (11)
C60.0666 (13)0.098 (2)0.0517 (11)0.0093 (12)0.0304 (10)0.0158 (12)
C50.0758 (13)0.0680 (16)0.0626 (12)0.0131 (11)0.0332 (10)0.0150 (11)
C120.0541 (10)0.0615 (15)0.0430 (9)0.0090 (9)0.0187 (8)0.0064 (9)
C180.0724 (14)0.135 (3)0.0576 (12)0.0028 (14)0.0290 (11)0.0205 (14)
C190.124 (2)0.203 (4)0.101 (2)0.006 (2)0.0660 (19)0.058 (2)
N10.0655 (10)0.0740 (13)0.0426 (8)0.0238 (9)0.0235 (7)0.0060 (8)
Geometric parameters (Å, º) top
C21—C221.373 (3)C11—C121.459 (2)
C21—C201.380 (2)C4—C31.386 (3)
C21—H210.9300C4—H40.9300
C22—C231.351 (3)C3—H30.9300
C22—H220.9300C9—C141.529 (3)
C23—C241.363 (3)C9—C131.532 (2)
C23—H230.9300C9—C161.538 (3)
C24—C251.380 (3)C16—C171.478 (3)
C24—H240.9300C16—H16A0.9700
C25—C201.374 (3)C16—H16B0.9700
C25—H250.9300C17—H17A0.9600
C20—N11.422 (2)C17—H17B0.9600
C27—C281.373 (3)C17—H17C0.9600
C27—C261.388 (2)C14—C151.490 (3)
C27—H270.9300C14—H14A0.9700
C28—C291.376 (3)C14—H14B0.9700
C28—H280.9300C15—H15A0.9600
C29—C301.372 (3)C15—H15B0.9600
C29—H290.9300C15—H15C0.9600
C30—C311.374 (3)C13—C81.381 (2)
C30—H300.9300C13—C121.387 (3)
C31—C261.390 (2)C8—C71.394 (3)
C31—H310.9300C8—H80.9300
C26—N11.400 (2)C7—C61.380 (3)
C2—C31.380 (3)C7—C181.434 (3)
C2—C11.389 (3)C6—C51.382 (3)
C2—N11.430 (2)C6—H60.9300
C1—C101.382 (2)C5—C121.392 (3)
C1—H10.9300C5—H50.9300
C10—C111.395 (3)C18—C191.158 (3)
C10—C91.525 (3)C19—H190.9300
C11—C41.383 (3)
C22—C21—C20120.2 (2)C10—C9—C14112.37 (15)
C22—C21—H21119.9C10—C9—C13100.07 (16)
C20—C21—H21119.9C14—C9—C13111.15 (14)
C23—C22—C21120.86 (19)C10—C9—C16111.90 (14)
C23—C22—H22119.6C14—C9—C16108.49 (19)
C21—C22—H22119.6C13—C9—C16112.75 (15)
C22—C23—C24119.6 (2)C17—C16—C9114.8 (2)
C22—C23—H23120.2C17—C16—H16A108.6
C24—C23—H23120.2C9—C16—H16A108.6
C23—C24—C25120.5 (2)C17—C16—H16B108.6
C23—C24—H24119.7C9—C16—H16B108.6
C25—C24—H24119.7H16A—C16—H16B107.5
C20—C25—C24120.11 (18)C16—C17—H17A109.5
C20—C25—H25119.9C16—C17—H17B109.5
C24—C25—H25119.9H17A—C17—H17B109.5
C25—C20—C21118.68 (18)C16—C17—H17C109.5
C25—C20—N1122.16 (16)H17A—C17—H17C109.5
C21—C20—N1119.15 (18)H17B—C17—H17C109.5
C28—C27—C26120.19 (17)C15—C14—C9115.6 (2)
C28—C27—H27119.9C15—C14—H14A108.4
C26—C27—H27119.9C9—C14—H14A108.4
C27—C28—C29121.27 (18)C15—C14—H14B108.4
C27—C28—H28119.4C9—C14—H14B108.4
C29—C28—H28119.4H14A—C14—H14B107.4
C30—C29—C28118.83 (18)C14—C15—H15A109.5
C30—C29—H29120.6C14—C15—H15B109.5
C28—C29—H29120.6H15A—C15—H15B109.5
C29—C30—C31120.71 (18)C14—C15—H15C109.5
C29—C30—H30119.6H15A—C15—H15C109.5
C31—C30—H30119.6H15B—C15—H15C109.5
C30—C31—C26120.73 (18)C8—C13—C12120.10 (18)
C30—C31—H31119.6C8—C13—C9128.4 (2)
C26—C31—H31119.6C12—C13—C9111.46 (15)
C27—C26—C31118.25 (16)C13—C8—C7119.6 (2)
C27—C26—N1121.20 (15)C13—C8—H8120.2
C31—C26—N1120.55 (15)C7—C8—H8120.2
C3—C2—C1120.17 (17)C6—C7—C8119.62 (19)
C3—C2—N1119.33 (19)C6—C7—C18119.8 (2)
C1—C2—N1120.50 (18)C8—C7—C18120.6 (2)
C10—C1—C2119.07 (19)C7—C6—C5121.5 (2)
C10—C1—H1120.5C7—C6—H6119.2
C2—C1—H1120.5C5—C6—H6119.2
C1—C10—C11120.56 (18)C6—C5—C12118.3 (2)
C1—C10—C9128.10 (18)C6—C5—H5120.9
C11—C10—C9111.33 (15)C12—C5—H5120.9
C4—C11—C10120.23 (17)C13—C12—C5120.81 (18)
C4—C11—C12131.22 (19)C13—C12—C11108.57 (16)
C10—C11—C12108.53 (17)C5—C12—C11130.6 (2)
C11—C4—C3118.9 (2)C19—C18—C7178.1 (3)
C11—C4—H4120.6C18—C19—H19180.0
C3—C4—H4120.6C26—N1—C20122.60 (14)
C2—C3—C4121.1 (2)C26—N1—C2119.97 (14)
C2—C3—H3119.5C20—N1—C2117.29 (14)
C4—C3—H3119.5
C20—C21—C22—C230.8 (4)C13—C9—C14—C1551.7 (2)
C21—C22—C23—C240.1 (4)C16—C9—C14—C15176.18 (18)
C22—C23—C24—C250.3 (4)C10—C9—C13—C8178.72 (17)
C23—C24—C25—C200.1 (4)C14—C9—C13—C862.4 (2)
C24—C25—C20—C210.8 (3)C16—C9—C13—C859.7 (2)
C24—C25—C20—N1179.5 (2)C10—C9—C13—C121.77 (17)
C22—C21—C20—C251.1 (3)C14—C9—C13—C12117.12 (19)
C22—C21—C20—N1179.93 (19)C16—C9—C13—C12120.81 (18)
C26—C27—C28—C290.5 (3)C12—C13—C8—C70.6 (2)
C27—C28—C29—C300.6 (3)C9—C13—C8—C7178.83 (16)
C28—C29—C30—C311.5 (3)C13—C8—C7—C60.5 (3)
C29—C30—C31—C261.2 (3)C13—C8—C7—C18179.61 (17)
C28—C27—C26—C310.8 (3)C8—C7—C6—C51.4 (3)
C28—C27—C26—N1179.70 (19)C18—C7—C6—C5178.63 (18)
C30—C31—C26—C270.1 (3)C7—C6—C5—C121.3 (3)
C30—C31—C26—N1178.85 (18)C8—C13—C12—C50.8 (3)
C3—C2—C1—C102.0 (3)C9—C13—C12—C5178.76 (15)
N1—C2—C1—C10177.44 (15)C8—C13—C12—C11179.06 (14)
C2—C1—C10—C111.2 (3)C9—C13—C12—C111.39 (19)
C2—C1—C10—C9177.93 (16)C6—C5—C12—C130.2 (3)
C1—C10—C11—C40.3 (3)C6—C5—C12—C11179.97 (17)
C9—C10—C11—C4179.56 (17)C4—C11—C12—C13178.18 (19)
C1—C10—C11—C12178.43 (15)C10—C11—C12—C130.3 (2)
C9—C10—C11—C120.87 (19)C4—C11—C12—C51.7 (3)
C10—C11—C4—C31.0 (3)C10—C11—C12—C5179.85 (18)
C12—C11—C4—C3177.32 (17)C6—C7—C18—C1932 (10)
C1—C2—C3—C41.2 (3)C8—C7—C18—C19148 (10)
N1—C2—C3—C4178.21 (16)C27—C26—N1—C2021.4 (3)
C11—C4—C3—C20.3 (3)C31—C26—N1—C20159.70 (19)
C1—C10—C9—C1464.3 (2)C27—C26—N1—C2163.01 (19)
C11—C10—C9—C14116.43 (18)C31—C26—N1—C215.9 (3)
C1—C10—C9—C13177.68 (16)C25—C20—N1—C2648.3 (3)
C11—C10—C9—C131.56 (17)C21—C20—N1—C26132.9 (2)
C1—C10—C9—C1658.0 (2)C25—C20—N1—C2127.4 (2)
C11—C10—C9—C16121.22 (17)C21—C20—N1—C251.4 (3)
C10—C9—C16—C1751.9 (2)C3—C2—N1—C26120.5 (2)
C14—C9—C16—C17176.40 (18)C1—C2—N1—C2658.9 (2)
C13—C9—C16—C1760.0 (2)C3—C2—N1—C2055.3 (2)
C10—C9—C14—C1559.6 (2)C1—C2—N1—C20125.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C26–C31 phenyl ring and Cg2 is the centroid of the C5–C8/C13/C12 phenyl ring of the fluorene moiety.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.763.508 (3)138
C30—H30···Cg2ii0.932.943.764 (2)149
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y, z.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the single-crystal X-ray data collection.

References

First citationBelfield, K. D., Hagan, D. J., Van Stryland, E. W., Schafer, K. J. & Negres, R. A. (1999). Org. Lett. 1, 1575–1578.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFitilis, I., Fakis, M., Polyzos, I., Giannetas, V., Persephonis, P., Vellis, P. & Mikroyannidis, J. (2007). Chem. Phys. Lett. 447, 300–304.  CrossRef CAS Google Scholar
First citationLiao, C., Yarnell, J. E., Glusac, K. D. & Schanze, K. S. (2010). J. Phys. Chem. B, 114, 14763–14771.  CrossRef CAS Google Scholar
First citationLiu, R., Zhou, D., Azenkeng, A., Li, Z., Li, Y., Glusac, K. D. & Sun, W. (2012). Chem. Eur. J. 18, 11440–11448.  CrossRef CAS Google Scholar
First citationOmer, K. M., Ku, S. Y., Wong, K.-T. & Bard, A. J. (2009). J. Am. Chem. Soc. 131, 10733–10741.  CrossRef CAS Google Scholar
First citationRogers, J. E., Slagle, J. E., Krein, D. M., Burke, A. R., Hall, B. C., Fratini, A., McLean, D. G., Fleitz, P. A., Cooper, T. M., Drobizhev, M., Makarov, S. N., Rebane, A., Kim, K. Y., Farley, R. & Schanze, K. S. (2007). Inorg. Chem. 46, 6483–6494.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShelton, A. H., Price, R. S., Brokmann, L., Dettlaff, B. & Schanze, K. S. (2013). Appl. Mater. Interfaces, 5, 7867–7874.  CrossRef CAS Google Scholar
First citationSingh, P., Baheti, A., Thomas, K. R. J., Lee, C.-P. & Ho, K.-C. (2012). Dyes Pigments, 95, 523–533.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. R. J., Kapoor, N., Bolisetty, M. N. K. P., Jou, J.-H., Chen, Y.-L. & Jou, Y.-C. (2012). J. Org. Chem. 77, 3921–3932.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds