organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 2-(benzo­yl­oxy)benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of Chemistry, School of Engineering and Technology, Jain University, Bengaluru 562 112, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: shaukathara@yahoo.co.in, khalil.i@najah.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 25 November 2016; accepted 3 December 2016; online 9 December 2016)

In the title compound, C15H12O4, the arene rings are inclined at an angle of 65.97 (6)°. The pendant methyl ester substituent has an extended conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains propagating along the b-axis direction. The chains are linked via offset ππ inter­actions [inter­centroid distance = 3.640 (1) Å], forming sheets parallel to (10-1).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Esters are a class of organic compounds which are of synthetic inter­est. Esters of salicylic acid such as acetyl salicylic acid (phenolic ester), phenyl salicylate and methyl salicylate (carb­oxy­lic esters) are widely used as drugs (Khanum et al., 2005[Khanum, S. A., Shashikanth, S., Umesha, S. & Kavitha, R. (2005). Eur. J. Med. Chem. 40, 1156-1162.]). Methyl salicylate is a volatile organic compound which is used for the post-harvest treatment of fruits to protect them from chilling injury by protecting the cell wall of the lipid from oxidative affects. It is also used as an anaesthetic in aqua­culture. The non-toxic effect of this ester has extended its utility as a flavoring agent in food and commercial products (Ozaki et al., 2015[Ozaki, H., Sugihara, K., Tamura, Y., Fujino, C., Watanabe, Y., Uramaru, N., Sone, T., Ohta, S. & Kitamura, S. (2015). Food Chem. Toxicol. 86, 116-123.]). The vast significance of such esters has enhanced the inter­est in exploring their structure–activity relationships and to search for esters as biological lead compounds. With these observations in mind, and as a part of our ongoing research on such mol­ecules (Mohammed et al., 2016[Mohammed, Y. H. I., Naveen, S., Lokanath, N. K., Manjunath, H. R., Al-Ghorbani, M. & Khanum, S. A. (2016). IUCrData, 1, x160415.]), we report here the synthesis and crystal structure of the title ester derivative.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule is non-planar, the arene rings (C1–C6 and C8–C13) being inclined at a dihedral angle of 65.97 (6)°. The pendant methyl ester chain has an extended conformation, as indicated by the C15—O4—C14—C9 torsion angle of 179.46 (11)°, and lies in the plane of the C18–C13 benzene ring, subtending a dihedral angle of 3.97 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains propagating along the b-axis direction (Table 1[link] and Fig. 2[link]). The chains are linked via offset ππ inter­actions [Cg1⋯Cg1ii = 3.640 (1) Å; Cg1 is the centroid of the C1–C6 ring; inter­planar distance = 3.403 (1) Å; slippage = 1.293 Å; symmetry code: (ii) −x, −y + 1, −z], forming sheets parallel to (10[\overline{1}]); see Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15ACg2i 0.96 2.77 3.6021 (17) 137
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The C—H⋯π inter­actions are illustrated as dashed lines (see Table 1[link]), and for clarity, only H atom H15A (grey ball) has been included.

Synthesis and crystallization

To a stirred solution of methyl 2-hy­droxy­benzoate (20 mmol) in dry di­chloro­methane (25 ml), tri­ethyl­amine (42 mmol) was added at 0°C and stirred for 30 minutes. Benzoyl chloride (28 mmol) was then added dropwise and the resulting mixture stirred at room temperature. After the completion of the reaction, which was monitored by TLC, the organic layer was washed with 5% hydro­chloric acid (3 × 15 ml), followed by distilled water (15 ml) and brine solution (10 ml. The solvent was dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain the title compound. The product obtained was further purified by recrystallization from ethanol. Yield: 87%, m.p 105–107°C.

IR (KBr, cm−1): ν 3580–3660 (OH), 1670 (C=O), 1323 (O—CH3). 1H NMR (400 MHz, DMSO-d6): δ 2.8 (s, 3H, CH3), 7.1–8.1 (m, 4H, Ar—H), 11.5 (s, 1H, OH). LCMS (M+): (152). Analysis calculated for: C8H8O3: C, 63.15; H, 5.30; found: C, 63.01; H, 5.26%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H12O4
Mr 256.25
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 19.4344 (7), 8.5216 (3), 14.6195 (5)
β (°) 93.075 (2)
V3) 2417.68 (15)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.85
Crystal size (mm) 0.29 × 0.27 × 0.25
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.790, 0.815
No. of measured, independent and observed [I > 2σ(I)] reflections 9409, 1986, 1830
Rint 0.036
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.05
No. of reflections 1986
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Methyl 2-(benzoyloxy)benzoate top
Crystal data top
C15H12O4F(000) = 1072
Mr = 256.25Dx = 1.408 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 1830 reflections
a = 19.4344 (7) Åθ = 4.6–64.3°
b = 8.5216 (3) ŵ = 0.85 mm1
c = 14.6195 (5) ÅT = 296 K
β = 93.075 (2)°Rectangle, white
V = 2417.68 (15) Å30.29 × 0.27 × 0.25 mm
Z = 8
Data collection top
Bruker X8 Proteum
diffractometer
1986 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1830 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.036
Detector resolution: 18.4 pixels mm-1θmax = 64.3°, θmin = 4.6°
φ and ω scansh = 2122
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 99
Tmin = 0.790, Tmax = 0.815l = 1716
9409 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.6772P]
where P = (Fo2 + 2Fc2)/3
1986 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16120 (5)0.39065 (11)0.10809 (6)0.0220 (3)
O20.07331 (4)0.34373 (11)0.19949 (6)0.0193 (3)
O30.16433 (5)0.52333 (11)0.30331 (7)0.0247 (3)
O40.24143 (5)0.39439 (11)0.39470 (6)0.0237 (3)
C10.06319 (7)0.55993 (15)0.09895 (8)0.0172 (4)
C20.00477 (7)0.58022 (16)0.12255 (9)0.0185 (4)
C30.04390 (7)0.70056 (16)0.08286 (9)0.0204 (4)
C40.01551 (7)0.80070 (16)0.02034 (9)0.0221 (4)
C50.05259 (7)0.78183 (16)0.00239 (9)0.0226 (4)
C60.09183 (7)0.66187 (16)0.03662 (9)0.0201 (4)
C70.10575 (7)0.42714 (15)0.13432 (8)0.0174 (4)
C80.11023 (7)0.21766 (16)0.23893 (9)0.0184 (4)
C90.16657 (7)0.24064 (16)0.30100 (9)0.0185 (4)
C100.20047 (7)0.10705 (16)0.33598 (9)0.0217 (4)
C110.17828 (8)0.04234 (17)0.31165 (10)0.0243 (4)
C120.12089 (7)0.06161 (17)0.25246 (9)0.0245 (4)
C130.08685 (7)0.06899 (17)0.21591 (9)0.0217 (4)
C140.18925 (7)0.40106 (16)0.33073 (9)0.0184 (4)
C150.26715 (8)0.54508 (17)0.42693 (10)0.0265 (4)
H20.023700.513400.164700.0220*
H30.089300.714200.098200.0240*
H40.042100.880800.006500.0260*
H50.071700.849900.043800.0270*
H60.137300.648900.021400.0240*
H100.238700.118800.376400.0260*
H110.201900.129700.335100.0290*
H120.105200.161800.237200.0290*
H130.048400.056500.176000.0260*
H15A0.277200.609500.375500.0400*
H15B0.308400.530000.465100.0400*
H15C0.232900.595700.461600.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (5)0.0254 (5)0.0221 (5)0.0031 (4)0.0042 (4)0.0022 (4)
O20.0170 (5)0.0214 (5)0.0195 (5)0.0020 (4)0.0019 (4)0.0052 (4)
O30.0258 (5)0.0213 (5)0.0268 (5)0.0038 (4)0.0006 (4)0.0003 (4)
O40.0239 (5)0.0244 (5)0.0224 (5)0.0029 (4)0.0035 (4)0.0024 (4)
C10.0198 (7)0.0171 (6)0.0145 (6)0.0012 (5)0.0006 (5)0.0031 (5)
C20.0199 (7)0.0193 (7)0.0162 (6)0.0015 (5)0.0008 (5)0.0012 (5)
C30.0189 (7)0.0207 (7)0.0215 (7)0.0017 (5)0.0001 (5)0.0037 (5)
C40.0280 (8)0.0165 (7)0.0214 (7)0.0032 (6)0.0009 (5)0.0015 (5)
C50.0309 (8)0.0172 (7)0.0200 (7)0.0013 (6)0.0037 (6)0.0016 (5)
C60.0203 (7)0.0204 (7)0.0198 (7)0.0010 (5)0.0034 (5)0.0027 (5)
C70.0182 (7)0.0202 (7)0.0136 (6)0.0030 (5)0.0004 (5)0.0008 (5)
C80.0180 (7)0.0211 (7)0.0166 (6)0.0032 (5)0.0050 (5)0.0039 (5)
C90.0186 (7)0.0215 (7)0.0159 (6)0.0013 (5)0.0054 (5)0.0030 (5)
C100.0197 (7)0.0258 (7)0.0197 (7)0.0023 (6)0.0024 (5)0.0039 (5)
C110.0267 (8)0.0211 (7)0.0255 (7)0.0037 (6)0.0051 (6)0.0058 (6)
C120.0297 (8)0.0203 (7)0.0239 (7)0.0042 (6)0.0060 (6)0.0006 (6)
C130.0216 (7)0.0253 (7)0.0184 (7)0.0022 (6)0.0026 (5)0.0021 (5)
C140.0163 (7)0.0235 (7)0.0157 (6)0.0004 (6)0.0047 (5)0.0017 (5)
C150.0279 (8)0.0272 (8)0.0242 (7)0.0063 (6)0.0001 (6)0.0021 (6)
Geometric parameters (Å, º) top
O1—C71.2039 (16)C9—C141.4938 (19)
O2—C71.3693 (15)C10—C111.384 (2)
O2—C81.3990 (16)C11—C121.384 (2)
O3—C141.2083 (17)C12—C131.387 (2)
O4—C141.3433 (16)C2—H20.9300
O4—C151.4476 (17)C3—H30.9300
C1—C21.3936 (19)C4—H40.9300
C1—C61.3961 (18)C5—H50.9300
C1—C71.4786 (18)C6—H60.9300
C2—C31.3854 (19)C10—H100.9300
C3—C41.3864 (19)C11—H110.9300
C4—C51.3911 (19)C12—H120.9300
C5—C61.3803 (19)C13—H130.9300
C8—C91.3979 (19)C15—H15A0.9600
C8—C131.381 (2)C15—H15B0.9600
C9—C101.3984 (19)C15—H15C0.9600
C7—O2—C8116.12 (10)O4—C14—C9111.33 (11)
C14—O4—C15115.07 (11)C1—C2—H2120.00
C2—C1—C6120.05 (12)C3—C2—H2120.00
C2—C1—C7121.88 (12)C2—C3—H3120.00
C6—C1—C7117.99 (12)C4—C3—H3120.00
C1—C2—C3119.63 (12)C3—C4—H4120.00
C2—C3—C4120.19 (13)C5—C4—H4120.00
C3—C4—C5120.25 (13)C4—C5—H5120.00
C4—C5—C6119.91 (12)C6—C5—H5120.00
C1—C6—C5119.98 (12)C1—C6—H6120.00
O1—C7—O2122.75 (11)C5—C6—H6120.00
O1—C7—C1125.44 (12)C9—C10—H10119.00
O2—C7—C1111.77 (11)C11—C10—H10119.00
O2—C8—C9121.77 (12)C10—C11—H11120.00
O2—C8—C13116.69 (12)C12—C11—H11120.00
C9—C8—C13121.50 (13)C11—C12—H12120.00
C8—C9—C10117.43 (12)C13—C12—H12120.00
C8—C9—C14121.72 (12)C8—C13—H13120.00
C10—C9—C14120.85 (12)C12—C13—H13120.00
C9—C10—C11121.37 (13)O4—C15—H15A109.00
C10—C11—C12119.94 (13)O4—C15—H15B109.00
C11—C12—C13119.82 (13)O4—C15—H15C109.00
C8—C13—C12119.88 (13)H15A—C15—H15B109.00
O3—C14—O4122.79 (12)H15A—C15—H15C109.00
O3—C14—C9125.86 (12)H15B—C15—H15C110.00
C8—O2—C7—O13.93 (17)C4—C5—C6—C10.2 (2)
C8—O2—C7—C1178.47 (10)O2—C8—C9—C10179.43 (12)
C7—O2—C8—C972.72 (16)O2—C8—C9—C141.8 (2)
C7—O2—C8—C13109.40 (13)C13—C8—C9—C102.8 (2)
C15—O4—C14—O31.61 (18)C13—C8—C9—C14175.99 (13)
C15—O4—C14—C9179.46 (11)O2—C8—C13—C12179.96 (13)
C6—C1—C2—C30.90 (19)C9—C8—C13—C122.1 (2)
C7—C1—C2—C3175.76 (12)C8—C9—C10—C111.3 (2)
C2—C1—C6—C50.68 (19)C14—C9—C10—C11177.47 (13)
C7—C1—C6—C5176.11 (12)C8—C9—C14—O32.8 (2)
C2—C1—C7—O1169.87 (13)C8—C9—C14—O4176.09 (12)
C2—C1—C7—O27.66 (17)C10—C9—C14—O3178.45 (13)
C6—C1—C7—O16.86 (19)C10—C9—C14—O42.66 (18)
C6—C1—C7—O2175.62 (11)C9—C10—C11—C120.9 (2)
C1—C2—C3—C40.3 (2)C10—C11—C12—C131.6 (2)
C2—C3—C4—C50.5 (2)C11—C12—C13—C80.2 (2)
C3—C4—C5—C60.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg2i0.962.773.6021 (17)137
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility. PN gratefully acknowledges the financial support of the UGC MRP(S)-0551–13–14/KAMY013/UGC-SWRO. Zabiulla gratefully acknowledges the financial support provided by the Department of Science and Technology, New Delhi, under the INSPIRE-Fellowship scheme. SAK thankfully acknowledges the financial support provided by VGST, Bangalore, under the CISEE Programme.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhanum, S. A., Shashikanth, S., Umesha, S. & Kavitha, R. (2005). Eur. J. Med. Chem. 40, 1156–1162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohammed, Y. H. I., Naveen, S., Lokanath, N. K., Manjunath, H. R., Al-Ghorbani, M. & Khanum, S. A. (2016). IUCrData, 1, x160415.  Google Scholar
First citationOzaki, H., Sugihara, K., Tamura, Y., Fujino, C., Watanabe, Y., Uramaru, N., Sone, T., Ohta, S. & Kitamura, S. (2015). Food Chem. Toxicol. 86, 116–123.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds