organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Bromo-1,2,4-triazolo[1,5-a]pyrimidine

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore, Karnataka, India, bPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, cDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore, Karnataka, India, and dDepartment of Material Science, Mangalore University, Mangaluru 574 199, India
*Correspondence e-mail: rangappaks@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 23 November 2016; accepted 5 December 2016; online 13 December 2016)

In the title compound, C5H3BrN4, the almost planar triazolo­pyrimidine ring system (r.m.s. deviation = 0.014 Å) carries a bromo substituent at the 5-position. In the crystal, C—H⋯N hydrogen bonds form inversion dimers enclosing R22(8) rings and also link mol­ecules into C(5) chains along the c-axis direction. Br⋯N halogen bonds [3.185 (4) Å], ππ stacking inter­actions, centroid-to-centroid separation [3.663 (3) Å] and C—Br⋯π contacts [Br⋯Cg = 3.7881 (17) Å] are also found and combine with the C—H⋯N hydrogen bonds to stack the mol­ecules along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a continuation of our work on the synthesis and structure determination of 1,2,4-triazolo[1,5-a]pyrimidine derivatives (Gilandoust et al., 2016[Gilandoust, M., Harsha, K. B., Madan Kumar, S., Rakesh, K. S., Lokanath, N. K., Byrappa, K. & Rangappa, K. S. (2016). IUCrData, 1, x161770.]), the title compound was prepared and its structure is reported here, Fig. 1[link]. The triazolo­pyrimidine ring system is planar (as expected) with an r.m.s. deviation of 0.014 Å. Bond lengths and angles in the ring system are normal and similar to those found in the related compound 5-(2-eth­oxy-4-fluoro­phenyl-1,2,4-triazolo[1,5-a]pyrimidine (Gilandoust et al., 2016[Gilandoust, M., Harsha, K. B., Madan Kumar, S., Rakesh, K. S., Lokanath, N. K., Byrappa, K. & Rangappa, K. S. (2016). IUCrData, 1, x161770.]).

[Figure 1]
Figure 1
A view of the title mol­ecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, C5—H5⋯N3 contacts, Table 1[link], form inversion dimers and generate R22(6) rings. C1—H1⋯N1 hydrogen bonds form C(5) chains of mol­ecules along c. These contacts combine with Br1⋯N4iii halogen bonds [d(Br⋯N) = 3.185 (4) Å; symmetry code: (iii) −x + [{1\over 2}], y + [{1\over 2}],-z + [{3\over 2}]] to form stacked layers of mol­ecules in the bc plane, Fig. 2[link]. Stacking along the a-axis direction is aided further by a combination of offset ππ stacking inter­actions [Cg1⋯Cg2iv = 3.663 (3) Å; symmetry code: (iv) −1 + x, y, z; Cg1 and Cg2 are the centroids of the C4/N2/N3/C5/N4 and C1–C3/N1/C4/N2 rings, respectively] reinforced by unusual, but not unprecedented (Shukla et al., 2017[Shukla, R., Panini, P., McAdam, C. J., Robinson, B. H., Simpson, J., Tagg, T. & Chopra, D. (2017). J. Mol. Struct. 1131, 16-24.]), C3—Br1⋯Cg2v contacts [Br⋯Cg1 = 3.7881 (17) Å, C3—Br1⋯Cg2 = 67.60 (12)°; symmetry code: (v) x + 1, y, z;] , Fig. 3[link]. Overall, a three-dimensional network of mol­ecules stacked along the a-axis direction forms as a result of these contacts, Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.52 3.421 (6) 164
C5—H5⋯N3ii 0.93 2.61 3.321 (6) 133
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x-1, -y, -z+2.
[Figure 2]
Figure 2
Layers of mol­ecules in the bc plane. Hydrogen and halogen bonds are drawn as blue dashed lines.
[Figure 3]
Figure 3
Offset ππ contacts and C—Br⋯π inter­actions (green dotted lines), with ring centroids shown as coloured spheres.
[Figure 4]
Figure 4
The overall packing, viewed along the a axis, showing ππ contacts and C—Br⋯π inter­actions.

Synthesis and crystallization

5-Bromo-2-hydrazino­pyrimidine (0.95 mmol) and formaldehyde (1.00 mmol) were suspended in EtOH (5 ml), and stirred for 2 h at RT. The reaction mixture was concentrated under reduced pressure to remove the ethanol and the crude product purified by column chromatography using 60:120 mesh silica gel and a MeOH: di­chloro­methane solution (10:90 ml) as eluent to yield 5-bromo-2-(2-methyl­enehydrazin­yl) pyrimidine as a beige solid. 5-Bromo-2-(2-methyl­enehydrazin­yl)pyrimidine (0.78 mmol) dissolved in (5 ml) di­chloro­methane and iodo­benzene di­acetate (0.78 mmol) was added in one portion. The mixture was stirred for 15 h at RT and the solvent evaporated. The residue was titurated with Et2O (5 ml), filtered and chromatographed using 60:120 mesh silica gel and MeOH:di­chloro­methane (10:90 ml) as eluent to give 5-bromo-[1,2,4]triazolo[1,5-a]pyrimidine as a yellow solid. Good quality single crystals suitable for X-ray diffraction studies were obtained by the slow evaporation method using ethanol as solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H3BrN4
Mr 199.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 3.9511 (4), 14.3306 (11), 11.367 (1)
β (°) 94.574 (8)
V3) 641.57 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.32
Crystal size (mm) 0.31 × 0.24 × 0.23
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.244, 0.323
No. of measured, independent and observed [I > 2σ(I)] reflections 2438, 1129, 977
Rint 0.036
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.08
No. of reflections 1129
No. of parameters 92
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.48
Computer programs: CrystalClear SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear SM Expert (Rigaku, 2011); cell refinement: CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-Bromo-1,2,4-triazolo[1,5-a]pyrimidine top
Crystal data top
C5H3BrN4F(000) = 384
Mr = 199.02Dx = 2.060 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.9511 (4) ÅCell parameters from 1129 reflections
b = 14.3306 (11) Åθ = 2.3–25.0°
c = 11.367 (1) ŵ = 6.32 mm1
β = 94.574 (8)°T = 293 K
V = 641.57 (9) Å3Colourless, block
Z = 40.31 × 0.24 × 0.23 mm
Data collection top
Rigaku Saturn724+
diffractometer
977 reflections with I > 2σ(I)
profile data from ω–scansRint = 0.036
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
θmax = 25.0°, θmin = 2.3°
Tmin = 0.244, Tmax = 0.323h = 43
2438 measured reflectionsk = 1617
1129 independent reflectionsl = 1312
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.2378P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.78 e Å3
1129 reflectionsΔρmin = 0.48 e Å3
92 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.017 (4)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.37251 (12)0.44459 (3)0.83589 (4)0.0390 (3)
N20.1257 (9)0.1890 (2)0.9772 (3)0.0275 (8)
N10.1085 (9)0.2690 (2)0.8197 (3)0.0291 (8)
N30.2878 (11)0.1067 (3)0.9961 (3)0.0381 (10)
N40.1505 (10)0.1167 (3)0.8052 (3)0.0360 (10)
C20.1125 (11)0.3336 (3)1.0154 (4)0.0322 (10)
H20.17690.38301.06550.039*
C30.1746 (10)0.3359 (3)0.8956 (3)0.0255 (9)
C10.0434 (12)0.2578 (3)1.0557 (4)0.0347 (11)
H10.09240.25301.13410.042*
C40.0482 (11)0.1944 (3)0.8616 (3)0.0241 (9)
C50.2909 (13)0.0680 (3)0.8910 (4)0.0365 (11)
H50.38590.00930.87630.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0447 (4)0.0354 (4)0.0366 (4)0.00695 (19)0.0006 (2)0.00610 (18)
N20.0334 (19)0.0306 (19)0.0184 (17)0.0009 (16)0.0018 (15)0.0026 (15)
N10.037 (2)0.031 (2)0.0200 (18)0.0021 (16)0.0045 (16)0.0020 (15)
N30.058 (3)0.031 (2)0.025 (2)0.0082 (19)0.0050 (18)0.0059 (16)
N40.053 (3)0.030 (2)0.0250 (19)0.0032 (18)0.0038 (18)0.0064 (16)
C20.042 (3)0.030 (2)0.023 (2)0.002 (2)0.0011 (19)0.0063 (18)
C30.022 (2)0.032 (2)0.023 (2)0.0001 (17)0.0014 (16)0.0024 (17)
C10.052 (3)0.039 (3)0.014 (2)0.001 (2)0.004 (2)0.0020 (18)
C40.031 (2)0.026 (2)0.0147 (18)0.0048 (18)0.0008 (16)0.0004 (16)
C50.042 (3)0.030 (2)0.036 (3)0.006 (2)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C31.893 (4)N4—C41.331 (6)
N2—N31.367 (5)N4—C51.354 (6)
N2—C11.353 (5)C2—H20.9300
N2—C41.375 (5)C2—C31.403 (6)
N1—C31.303 (5)C2—C11.347 (6)
N1—C41.342 (5)C1—H10.9300
N3—C51.316 (6)C5—H50.9300
N3—N2—C4110.0 (3)C2—C3—Br1118.5 (3)
C1—N2—N3128.0 (3)N2—C1—H1121.4
C1—N2—C4121.9 (4)C2—C1—N2117.2 (4)
C3—N1—C4115.2 (3)C2—C1—H1121.4
C5—N3—N2101.0 (3)N1—C4—N2121.9 (4)
C4—N4—C5102.2 (4)N4—C4—N2109.3 (4)
C3—C2—H2121.0N4—C4—N1128.8 (4)
C1—C2—H2121.0N3—C5—N4117.5 (4)
C1—C2—C3117.9 (4)N3—C5—H5121.3
N1—C3—Br1115.8 (3)N4—C5—H5121.3
N1—C3—C2125.8 (4)
N2—N3—C5—N40.6 (6)C1—C2—C3—Br1176.9 (4)
N3—N2—C1—C2178.9 (4)C1—C2—C3—N13.3 (7)
N3—N2—C4—N1179.2 (4)C4—N2—N3—C51.0 (5)
N3—N2—C4—N41.2 (5)C4—N2—C1—C21.4 (6)
C3—N1—C4—N21.3 (6)C4—N1—C3—Br1176.6 (3)
C3—N1—C4—N4179.1 (4)C4—N1—C3—C23.5 (6)
C3—C2—C1—N20.6 (6)C4—N4—C5—N30.1 (6)
C1—N2—N3—C5178.7 (4)C5—N4—C4—N20.7 (5)
C1—N2—C4—N11.1 (6)C5—N4—C4—N1179.6 (4)
C1—N2—C4—N4178.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.523.421 (6)164
C5—H5···N3ii0.932.613.321 (6)133
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1, y, z+2.
 

Acknowledgements

The authors thank the DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. KSR thanks the DST, Indo-Korea programme (grant No. INT/Korea/dated/13/09/2011) and KBH thanks the UGC for providing a UGC meritorious fellowship.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilandoust, M., Harsha, K. B., Madan Kumar, S., Rakesh, K. S., Lokanath, N. K., Byrappa, K. & Rangappa, K. S. (2016). IUCrData, 1, x161770.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShukla, R., Panini, P., McAdam, C. J., Robinson, B. H., Simpson, J., Tagg, T. & Chopra, D. (2017). J. Mol. Struct. 1131, 16–24.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds