organic compounds
5-Bromo-1,2,4-triazolo[1,5-a]pyrimidine
aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore, Karnataka, India, bPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, cDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore, Karnataka, India, and dDepartment of Material Science, Mangalore University, Mangaluru 574 199, India
*Correspondence e-mail: rangappaks@gmail.com
In the title compound, C5H3BrN4, the almost planar triazolopyrimidine ring system (r.m.s. deviation = 0.014 Å) carries a bromo substituent at the 5-position. In the crystal, C—H⋯N hydrogen bonds form inversion dimers enclosing R22(8) rings and also link molecules into C(5) chains along the c-axis direction. Br⋯N halogen bonds [3.185 (4) Å], π–π stacking interactions, centroid-to-centroid separation [3.663 (3) Å] and C—Br⋯π contacts [Br⋯Cg = 3.7881 (17) Å] are also found and combine with the C—H⋯N hydrogen bonds to stack the molecules along the a-axis direction.
Keywords: crystal structure; triazolo[1,5-a]pyrimidine derivatives; hydrogen bonds; Br⋯N halogen bonds; π–π stacking interactions.
CCDC reference: 1520692
Structure description
In a continuation of our work on the synthesis and a]pyrimidine derivatives (Gilandoust et al., 2016), the title compound was prepared and its structure is reported here, Fig. 1. The triazolopyrimidine ring system is planar (as expected) with an r.m.s. deviation of 0.014 Å. Bond lengths and angles in the ring system are normal and similar to those found in the related compound 5-(2-ethoxy-4-fluorophenyl-1,2,4-triazolo[1,5-a]pyrimidine (Gilandoust et al., 2016).
of 1,2,4-triazolo[1,5-In the crystal, C5—H5⋯N3 contacts, Table 1, form inversion dimers and generate R22(6) rings. C1—H1⋯N1 hydrogen bonds form C(5) chains of molecules along c. These contacts combine with Br1⋯N4iii halogen bonds [d(Br⋯N) = 3.185 (4) Å; symmetry code: (iii) −x + , y + ,-z + ] to form stacked layers of molecules in the bc plane, Fig. 2. Stacking along the a-axis direction is aided further by a combination of offset π–π stacking interactions [Cg1⋯Cg2iv = 3.663 (3) Å; symmetry code: (iv) −1 + x, y, z; Cg1 and Cg2 are the centroids of the C4/N2/N3/C5/N4 and C1–C3/N1/C4/N2 rings, respectively] reinforced by unusual, but not unprecedented (Shukla et al., 2017), C3—Br1⋯Cg2v contacts [Br⋯Cg1 = 3.7881 (17) Å, C3—Br1⋯Cg2 = 67.60 (12)°; symmetry code: (v) x + 1, y, z;] , Fig. 3. Overall, a three-dimensional network of molecules stacked along the a-axis direction forms as a result of these contacts, Fig. 4.
Synthesis and crystallization
5-Bromo-2-hydrazinopyrimidine (0.95 mmol) and formaldehyde (1.00 mmol) were suspended in EtOH (5 ml), and stirred for 2 h at RT. The reaction mixture was concentrated under reduced pressure to remove the ethanol and the crude product purified by 2O (5 ml), filtered and chromatographed using 60:120 mesh silica gel and MeOH:dichloromethane (10:90 ml) as to give 5-bromo-[1,2,4]triazolo[1,5-a]pyrimidine as a yellow solid. Good quality single crystals suitable for X-ray diffraction studies were obtained by the slow evaporation method using ethanol as solvent.
using 60:120 mesh silica gel and a MeOH: dichloromethane solution (10:90 ml) as to yield 5-bromo-2-(2-methylenehydrazinyl) pyrimidine as a beige solid. 5-Bromo-2-(2-methylenehydrazinyl)pyrimidine (0.78 mmol) dissolved in (5 ml) dichloromethane and iodobenzene diacetate (0.78 mmol) was added in one portion. The mixture was stirred for 15 h at RT and the solvent evaporated. The residue was titurated with EtRefinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1520692
https://doi.org/10.1107/S2414314616019441/sj4072sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616019441/sj4072Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616019441/sj4072Isup3.cml
Data collection: CrystalClear SM Expert (Rigaku, 2011); cell
CrystalClear SM Expert (Rigaku, 2011); data reduction: CrystalClear SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C5H3BrN4 | F(000) = 384 |
Mr = 199.02 | Dx = 2.060 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9511 (4) Å | Cell parameters from 1129 reflections |
b = 14.3306 (11) Å | θ = 2.3–25.0° |
c = 11.367 (1) Å | µ = 6.32 mm−1 |
β = 94.574 (8)° | T = 293 K |
V = 641.57 (9) Å3 | Colourless, block |
Z = 4 | 0.31 × 0.24 × 0.23 mm |
Rigaku Saturn724+ diffractometer | 977 reflections with I > 2σ(I) |
profile data from ω–scans | Rint = 0.036 |
Absorption correction: multi-scan (NUMABS; Rigaku, 1999) | θmax = 25.0°, θmin = 2.3° |
Tmin = 0.244, Tmax = 0.323 | h = −4→3 |
2438 measured reflections | k = −16→17 |
1129 independent reflections | l = −13→12 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0649P)2 + 0.2378P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.111 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 0.78 e Å−3 |
1129 reflections | Δρmin = −0.48 e Å−3 |
92 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.017 (4) |
Primary atom site location: iterative |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.37251 (12) | 0.44459 (3) | 0.83589 (4) | 0.0390 (3) | |
N2 | −0.1257 (9) | 0.1890 (2) | 0.9772 (3) | 0.0275 (8) | |
N1 | 0.1085 (9) | 0.2690 (2) | 0.8197 (3) | 0.0291 (8) | |
N3 | −0.2878 (11) | 0.1067 (3) | 0.9961 (3) | 0.0381 (10) | |
N4 | −0.1505 (10) | 0.1167 (3) | 0.8052 (3) | 0.0360 (10) | |
C2 | 0.1125 (11) | 0.3336 (3) | 1.0154 (4) | 0.0322 (10) | |
H2 | 0.1769 | 0.3830 | 1.0655 | 0.039* | |
C3 | 0.1746 (10) | 0.3359 (3) | 0.8956 (3) | 0.0255 (9) | |
C1 | −0.0434 (12) | 0.2578 (3) | 1.0557 (4) | 0.0347 (11) | |
H1 | −0.0924 | 0.2530 | 1.1341 | 0.042* | |
C4 | −0.0482 (11) | 0.1944 (3) | 0.8616 (3) | 0.0241 (9) | |
C5 | −0.2909 (13) | 0.0680 (3) | 0.8910 (4) | 0.0365 (11) | |
H5 | −0.3859 | 0.0093 | 0.8763 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0447 (4) | 0.0354 (4) | 0.0366 (4) | −0.00695 (19) | 0.0006 (2) | 0.00610 (18) |
N2 | 0.0334 (19) | 0.0306 (19) | 0.0184 (17) | −0.0009 (16) | 0.0018 (15) | 0.0026 (15) |
N1 | 0.037 (2) | 0.031 (2) | 0.0200 (18) | 0.0021 (16) | 0.0045 (16) | 0.0020 (15) |
N3 | 0.058 (3) | 0.031 (2) | 0.025 (2) | −0.0082 (19) | 0.0050 (18) | 0.0059 (16) |
N4 | 0.053 (3) | 0.030 (2) | 0.0250 (19) | −0.0032 (18) | 0.0038 (18) | −0.0064 (16) |
C2 | 0.042 (3) | 0.030 (2) | 0.023 (2) | −0.002 (2) | −0.0011 (19) | −0.0063 (18) |
C3 | 0.022 (2) | 0.032 (2) | 0.023 (2) | 0.0001 (17) | −0.0014 (16) | 0.0024 (17) |
C1 | 0.052 (3) | 0.039 (3) | 0.014 (2) | −0.001 (2) | 0.004 (2) | −0.0020 (18) |
C4 | 0.031 (2) | 0.026 (2) | 0.0147 (18) | 0.0048 (18) | −0.0008 (16) | −0.0004 (16) |
C5 | 0.042 (3) | 0.030 (2) | 0.036 (3) | −0.006 (2) | −0.005 (2) | −0.001 (2) |
Br1—C3 | 1.893 (4) | N4—C4 | 1.331 (6) |
N2—N3 | 1.367 (5) | N4—C5 | 1.354 (6) |
N2—C1 | 1.353 (5) | C2—H2 | 0.9300 |
N2—C4 | 1.375 (5) | C2—C3 | 1.403 (6) |
N1—C3 | 1.303 (5) | C2—C1 | 1.347 (6) |
N1—C4 | 1.342 (5) | C1—H1 | 0.9300 |
N3—C5 | 1.316 (6) | C5—H5 | 0.9300 |
N3—N2—C4 | 110.0 (3) | C2—C3—Br1 | 118.5 (3) |
C1—N2—N3 | 128.0 (3) | N2—C1—H1 | 121.4 |
C1—N2—C4 | 121.9 (4) | C2—C1—N2 | 117.2 (4) |
C3—N1—C4 | 115.2 (3) | C2—C1—H1 | 121.4 |
C5—N3—N2 | 101.0 (3) | N1—C4—N2 | 121.9 (4) |
C4—N4—C5 | 102.2 (4) | N4—C4—N2 | 109.3 (4) |
C3—C2—H2 | 121.0 | N4—C4—N1 | 128.8 (4) |
C1—C2—H2 | 121.0 | N3—C5—N4 | 117.5 (4) |
C1—C2—C3 | 117.9 (4) | N3—C5—H5 | 121.3 |
N1—C3—Br1 | 115.8 (3) | N4—C5—H5 | 121.3 |
N1—C3—C2 | 125.8 (4) | ||
N2—N3—C5—N4 | −0.6 (6) | C1—C2—C3—Br1 | 176.9 (4) |
N3—N2—C1—C2 | −178.9 (4) | C1—C2—C3—N1 | −3.3 (7) |
N3—N2—C4—N1 | 179.2 (4) | C4—N2—N3—C5 | 1.0 (5) |
N3—N2—C4—N4 | −1.2 (5) | C4—N2—C1—C2 | 1.4 (6) |
C3—N1—C4—N2 | −1.3 (6) | C4—N1—C3—Br1 | −176.6 (3) |
C3—N1—C4—N4 | 179.1 (4) | C4—N1—C3—C2 | 3.5 (6) |
C3—C2—C1—N2 | 0.6 (6) | C4—N4—C5—N3 | −0.1 (6) |
C1—N2—N3—C5 | −178.7 (4) | C5—N4—C4—N2 | 0.7 (5) |
C1—N2—C4—N1 | −1.1 (6) | C5—N4—C4—N1 | −179.6 (4) |
C1—N2—C4—N4 | 178.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···N1i | 0.93 | 2.52 | 3.421 (6) | 164 |
C5—H5···N3ii | 0.93 | 2.61 | 3.321 (6) | 133 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) −x−1, −y, −z+2. |
Acknowledgements
The authors thank the DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. KSR thanks the DST, Indo-Korea programme (grant No. INT/Korea/dated/13/09/2011) and KBH thanks the UGC for providing a UGC meritorious fellowship.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gilandoust, M., Harsha, K. B., Madan Kumar, S., Rakesh, K. S., Lokanath, N. K., Byrappa, K. & Rangappa, K. S. (2016). IUCrData, 1, x161770. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shukla, R., Panini, P., McAdam, C. J., Robinson, B. H., Simpson, J., Tagg, T. & Chopra, D. (2017). J. Mol. Struct. 1131, 16–24. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.