metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[di-μ2-acetato-κ4O:O′-μ3-thio­urea-κ3S:S:S-lead(II)]: a redetermination

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S, Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 19 November 2016; accepted 27 November 2016; online 2 December 2016)

The structure of the title polymeric lead(II) thio­urea complex, [Pb(CH3O)2{SC(NH2)2}]n, has been redetermined at significantly higher precision using diffractometer data at 100 K. The previous determination used data obtained from multiple-film integrated Weissenberg photographs [Nardelli et al. (1960[Nardelli, M., Fava, G. & Branchi, G. (1960). Acta Cryst. 13, 898-904.]). Acta Cryst. 13, 898–904]. The main difference between the two models is in the precision of the bond lengths, angles and cell parameters. In the crystal, the eight-coordinate PbII atom is chelated by two carboxyl­ate groups and bridged by three S atoms from thio­urea ligands. The coordination sphere is completed by an O atom from a third carboxyl­ate group, the second O atom of which binds to a neighbouring PbII atom, forming a polymeric chain that runs the a axis. Two of these chains are related by centres of symmetry. Inter­molecular hydrogen bonds connect neighbouring chains to one another, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the polymeric complex, [Pb(CH3O)2{SC(NH2)2}]n, (Fig. 1[link]) an infinite one-dimensional polymeric chain propagates along the a axis (Fig. 2[link]) with the PbII ions chelated by the O atoms of two carboxyl­ate groups and bridged by three S atoms from thio­urea ligands related to a neighbouring Pb atom by a centre of symmetry. The eightfold coordination is completed by an oxygen atom from a third carboxyl­ate group (Fig. 2[link]). The Pb—O bond lengths range from 2.483 (2) to 2.626 (2) Å, while the two unique Pb—S bonds are 3.0701 (9) and 3.1121 (9) Å, respectively. The Pb atom is displaced out of the least-squares planes of the carboxyl­ate groups (A = O1/C1/O2) and (B = O3/C3/O4) by 0.0038 (2) and 0.0078 (3) Å, respectively. The dihedral angles between the mean planes of thio­urea ligands (S1/C5/N1/N2) and the carboxyl­ate groups A and B are 6.93 (18) and 64.37 (19)°, respectively.

[Figure 1]
Figure 1
The polymeric chain in the structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Atom labels with the suffix a, b and c are related to those with no suffix by the symmetry operations (i), (ii) and (iii) in Table 1[link].
[Figure 2]
Figure 2
View of a polymeric chain of in the structure of the title compound. For clarity, the [PbO5S3] units are shown as polyhedra, the atoms of the organic ligands are represented as spheres of uniform size selected for each atom type. N—H⋯O and C—H⋯O hydrogen bonds within the chain are shown as dashed lines.

In the crystal, H atoms are involved in inter-chain N—H⋯O and intra-chain N—H⋯O and C—H⋯O hydrogen bonds. These link the polymeric chains and stabilize the crystal structure, forming a three-dimensional network (Fig. 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2NB⋯O4i 0.86 1.99 2.836 (4) 169
N2—H2NA⋯O1ii 0.86 2.04 2.883 (4) 168
N1—H1NA⋯O2iii 0.86 2.26 3.021 (4) 148
N1—H1NB⋯O3iv 0.86 2.48 3.311 (4) 163
C4—H4A⋯O4 0.96 2.51 3.225 (5) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y, -z.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the a axis. N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

Synthesis and crystallization

The title compound was obtained from a mixture of (di­amino­methyl­idene)sulfonium chloride/thio­urea (3/2) (Zouihri, 2012[Zouihri, H. (2012). Acta Cryst. E68, o257.]) and lead acetate in a molar ratio of 1:1 in ethanol. The mixture was then left for slow evaporation and colourless crystals formed after four days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One reflection (011) with Fo <<< Fc, likely to have been affected by the beamstop, was omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Pb(C2H3O2)2(CH4N2S)]
Mr 401.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 4.4865 (2), 15.7001 (5), 13.6313 (5)
β (°) 91.481 (2)
V3) 959.85 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 17.78
Crystal size (mm) 0.32 × 0.27 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.005, 0.099
No. of measured, independent and observed [I > 2σ(I)] reflections 13626, 1893, 1824
Rint 0.036
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.037, 1.08
No. of reflections 1893
No. of parameters 120
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −1.22
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[di-µ2-acetato-κ4O:O'-µ3-thiourea-κ3S:S:S-lead(II)] top
Crystal data top
[Pb(C2H3O2)2(CH4N2S)]F(000) = 736
Mr = 401.40Dx = 2.778 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.4865 (2) ÅCell parameters from 214 reflections
b = 15.7001 (5) Åθ = 3.1–26.4°
c = 13.6313 (5) ŵ = 17.78 mm1
β = 91.481 (2)°T = 100 K
V = 959.85 (6) Å3Prism, colourless
Z = 40.32 × 0.27 × 0.13 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
1893 independent reflections
Radiation source: fine-focus sealed tube1824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.005, Tmax = 0.099k = 1919
13626 measured reflectionsl = 1616
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.0115P)2 + 1.9359P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1893 reflectionsΔρmax = 0.88 e Å3
120 parametersΔρmin = 1.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.74423 (2)0.09596 (2)0.12971 (2)0.01076 (6)
O21.0207 (5)0.22282 (15)0.19960 (18)0.0179 (5)
O10.6719 (5)0.24845 (16)0.08699 (19)0.0185 (5)
C10.8763 (7)0.2736 (2)0.1450 (2)0.0148 (7)
C20.9506 (9)0.3666 (2)0.1503 (3)0.0272 (8)
H2A0.83920.39670.10020.041*
H2B1.16010.37430.14060.041*
H2C0.90010.38840.21350.041*
S11.22553 (19)0.09283 (5)0.02631 (6)0.01392 (17)
C31.3066 (7)0.0675 (2)0.2991 (3)0.0156 (7)
O31.2009 (5)0.02818 (15)0.22544 (17)0.0166 (5)
O40.5375 (6)0.11365 (17)0.29615 (19)0.0204 (5)
C51.1245 (7)0.1822 (2)0.0929 (2)0.0127 (6)
N21.2377 (6)0.25730 (18)0.0723 (2)0.0154 (6)
H2NB1.18320.30110.10610.019*
H2NA1.36650.26280.02480.019*
N10.9253 (6)0.1734 (2)0.1662 (2)0.0194 (6)
H1NA0.87020.21700.20020.023*
H1NB0.85160.12400.17950.023*
C41.1663 (9)0.0596 (3)0.3979 (3)0.0280 (8)
H4A0.96070.04370.38920.042*
H4B1.17930.11320.43160.042*
H4C1.26950.01680.43590.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01374 (8)0.00827 (8)0.01006 (8)0.00053 (4)0.00361 (5)0.00080 (4)
O20.0227 (12)0.0117 (12)0.0188 (13)0.0023 (9)0.0098 (10)0.0009 (10)
O10.0213 (12)0.0146 (12)0.0191 (13)0.0020 (9)0.0092 (10)0.0023 (10)
C10.0189 (16)0.0118 (16)0.0136 (16)0.0018 (13)0.0015 (12)0.0016 (13)
C20.039 (2)0.0124 (18)0.029 (2)0.0067 (15)0.0150 (17)0.0051 (15)
S10.0199 (4)0.0078 (4)0.0137 (4)0.0009 (3)0.0069 (3)0.0015 (3)
C30.0180 (16)0.0138 (16)0.0146 (17)0.0055 (13)0.0061 (13)0.0008 (13)
O30.0219 (12)0.0127 (12)0.0147 (12)0.0018 (9)0.0084 (9)0.0010 (9)
O40.0223 (13)0.0199 (12)0.0188 (13)0.0024 (10)0.0045 (10)0.0074 (10)
C50.0152 (14)0.0142 (16)0.0087 (15)0.0019 (12)0.0009 (11)0.0032 (12)
N20.0213 (14)0.0115 (14)0.0130 (14)0.0018 (11)0.0078 (11)0.0046 (11)
N10.0225 (14)0.0173 (15)0.0180 (15)0.0014 (12)0.0086 (11)0.0063 (12)
C40.0267 (19)0.033 (2)0.024 (2)0.0037 (16)0.0017 (16)0.0015 (17)
Geometric parameters (Å, º) top
Pb1—O12.483 (2)S1—Pb1ii3.1121 (9)
Pb1—O42.489 (3)C3—O31.261 (4)
Pb1—O22.520 (2)C3—O4ii1.265 (4)
Pb1—O32.626 (2)C3—C41.507 (5)
Pb1—C12.858 (3)O4—C3i1.265 (4)
Pb1—S13.0701 (9)C5—N21.311 (4)
Pb1—S1i3.1121 (9)C5—N11.330 (4)
O2—C11.259 (4)N2—H2NB0.8600
O1—C11.259 (4)N2—H2NA0.8600
C1—C21.499 (5)N1—H1NA0.8600
C2—H2A0.9600N1—H1NB0.8600
C2—H2B0.9600C4—H4A0.9600
C2—H2C0.9600C4—H4B0.9600
S1—C51.726 (3)C4—H4C0.9600
O1—Pb1—O493.25 (8)C1—C2—H2C109.5
O1—Pb1—O252.18 (8)H2A—C2—H2C109.5
O4—Pb1—O276.03 (8)H2B—C2—H2C109.5
O1—Pb1—O3127.07 (8)C5—S1—Pb199.88 (10)
O4—Pb1—O384.07 (8)C5—S1—Pb1ii121.89 (12)
O2—Pb1—O376.25 (7)Pb1—S1—Pb1ii93.05 (2)
O1—Pb1—S186.73 (6)O3—C3—O4ii123.1 (3)
O4—Pb1—S1156.73 (6)O3—C3—C4120.9 (3)
O2—Pb1—S185.78 (6)O4ii—C3—C4115.9 (3)
O3—Pb1—S177.53 (5)C3—O3—Pb1118.0 (2)
C1—Pb1—S185.29 (7)C3i—O4—Pb1106.9 (2)
O1—Pb1—S1i76.36 (6)N2—C5—N1120.3 (3)
O4—Pb1—S1i109.57 (6)N2—C5—S1121.5 (3)
O2—Pb1—S1i128.52 (6)N1—C5—S1118.2 (3)
O3—Pb1—S1i153.29 (5)C5—N2—H2NB120.0
S1—Pb1—S1i93.05 (2)C5—N2—H2NA120.0
C1—O2—Pb192.08 (19)H2NB—N2—H2NA120.0
C1—O1—Pb193.8 (2)C5—N1—H1NA120.0
O2—C1—O1121.9 (3)C5—N1—H1NB120.0
O2—C1—C2118.6 (3)H1NA—N1—H1NB120.0
O1—C1—C2119.6 (3)C3—C4—H4A109.5
O2—C1—Pb161.80 (17)C3—C4—H4B109.5
O1—C1—Pb160.11 (17)H4A—C4—H4B109.5
C2—C1—Pb1178.3 (3)C3—C4—H4C109.5
C1—C2—H2A109.5H4A—C4—H4C109.5
C1—C2—H2B109.5H4B—C4—H4C109.5
H2A—C2—H2B109.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NB···O4iii0.861.992.836 (4)169
N2—H2NA···O1ii0.862.042.883 (4)168
N1—H1NA···O2iv0.862.263.021 (4)148
N1—H1NB···O3v0.862.483.311 (4)163
C4—H4A···O40.962.513.225 (5)131
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x+2, y, z.
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M., Fava, G. & Branchi, G. (1960). Acta Cryst. 13, 898–904.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZouihri, H. (2012). Acta Cryst. E68, o257.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds