organic compounds
2-Amino-5-bromopyridinium 2-phenoxyacetate
aDepartment of Chemistry, Dhanalakshmi Srinivasan Institute of Technology, Samayapuram, Tiruchirappalli 621 112, Tamil Nadu, India, bDepartment of Chemistry, St. Joseph College (Autonomous), Tiruchirappalli 620 002, Tamil Nadu, India, cDepartment of Chemistry, Government Arts College, Tiruchirappalli 620 022, Tamil Nadu, India, and dSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: chemdhanabalan@gmail.com
The phenoxyacetate anion of the title salt, C5H6BrN2+·C8H7O3−, is essentially planar, with a dihedral angle of 7.6 (5)° between the carboxylate group and the benzene ring. In the crystal, the cation and the anion are linked via N—H⋯O hydrogen bonds, forming a helical chain along a 21 screw axis. In the chain, a π–π stacking interaction between the pyridinium and benzene rings, with a centroid–centroid distance of 3.854 (2) Å, and a C—H⋯O interaction are observed. The chains are further linked through another C—H⋯O hydrogen bond, forming a three-dimensional network.
CCDC reference: 1520598
Structure description
Supramolecular architectures assembled via various delicate non-covalent interactions, such as hydrogen bonds, π–π stacking and electrostatic interactions, etc. have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007). In particular, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeröy & Seddon, 1993). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions. Aryloxyacetic acid derivatives possess a wide array of diverse bioactivities including antimycobacterial (Ali & Shanharyar, 2007; Shaharyar et al., 2006), anti-inflammatory and antioxidant (Kunsch et al., 2005), antibacterial (Iqbal et al., 2007), antilipaemic and antiplatelet (Pérez-Pastén et al., 2006) and inhibitory activity of cathepsin K and aldose reductase (Shinozuka et al., 2006). In order to study some hydrogen-bonding interactions, the structure of the title salt was determined.
The ) contains one 2-amino-5-bromopyridinium cation and one phenoxyacetate anion, in which the carboxyl group of the phenoxyacetate acid is ionized by proton transfer to the nitrogen atom of bromopyridine. The carboxylate anion is also confirmed by the bond distances O2—C6 = 1.242 (4) Å and O3—C6 = 1.270 (4) Å. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C1—N1—C5 = 122.1 (3)°] is subtended at the protonated N1 atom. This type of protonation is observed in various aminopyridine acid complexes (Hemamalini & Fun 2010; Khalib et al., 2013). The non-H atoms of the 2-amino-5-bromopyridinium cation are essentially co-planar, with a maximum deviation of 0.016 (3) Å for atom N2. The dihedral angle between the pyridine (N1/C1–C5) and benzene (C8–C13) rings is 10.22 (18)°. The anion is essentially planar, with a dihedral angle of 7.6 (5)° between the benzene (C8–C13) ring and the carboxylate (O2/O3/C6) group and with a C8—O1—C7—C6 torsion angle of 172.7 (3)°. All the bond lengths and angles are normal.
(Fig. 1In the crystal, the cation and the anion are linked via N1—H1N1⋯O3 and N2—H1N2⋯O2 hydrogen bonds, forming an R22(8) ring motif. The cation further interacts with the anions through a bifurcated N2—H2N2⋯(O1i,O2i) hydrogen bond and a C2—H2A⋯O2i interaction (symmetry code in Table 1) with R12(5) and R21(6) ring motifs, forming a helical chain (Fig. 2). A π–π stacking interaction between the pyridinium (C1–C5/N1) and benzene (C8–C13; symmetry code: x, y − 1, z) rings with a centroid–centroid distance of 3.854 (2) Å is observed in the chain. Finally, a weak C5—H5A⋯O3ii hydrogen bond (symmetry code in Table 1), leads to the formation of a three-dimensional network.
Synthesis and crystallization
A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (43 mg, Aldrich) and phenoxyacetic acid (38 mg, Merck) were mixed and warmed over a heating magnetic-stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1520598
https://doi.org/10.1107/S2414314616019398/is5465sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616019398/is5465Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616019398/is5465Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H6BrN2+·C8H7O3− | Dx = 1.620 Mg m−3 |
Mr = 325.16 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41212 | Cell parameters from 9890 reflections |
Hall symbol: P 4abw 2nw | θ = 2.3–26.4° |
a = 8.6944 (1) Å | µ = 3.09 mm−1 |
c = 35.2843 (7) Å | T = 100 K |
V = 2667.23 (7) Å3 | Block, colourless |
Z = 8 | 0.34 × 0.21 × 0.13 mm |
F(000) = 1312 |
Bruker SMART APEXII CCD area-detector diffractometer | 3407 independent reflections |
Radiation source: fine-focus sealed tube | 2790 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.076 |
φ and ω scans | θmax = 28.6°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.419, Tmax = 0.688 | k = −11→11 |
38666 measured reflections | l = −47→47 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.P)2 + 4.511P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.001 |
3407 reflections | Δρmax = 0.52 e Å−3 |
184 parameters | Δρmin = −0.52 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 1324 Fridel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.072 (13) |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.85535 (5) | 1.53676 (5) | 0.471862 (11) | 0.02404 (10) | |
O1 | 1.0287 (3) | 0.5443 (3) | 0.58802 (7) | 0.0207 (6) | |
O2 | 0.8557 (3) | 0.7960 (3) | 0.58999 (7) | 0.0251 (6) | |
O3 | 0.9831 (3) | 0.9012 (3) | 0.54112 (7) | 0.0228 (6) | |
N1 | 0.8335 (3) | 1.1573 (4) | 0.54085 (8) | 0.0168 (6) | |
N2 | 0.7130 (4) | 1.0932 (4) | 0.59699 (10) | 0.0218 (7) | |
C1 | 0.7426 (4) | 1.1976 (4) | 0.57033 (10) | 0.0171 (8) | |
C2 | 0.6803 (4) | 1.3478 (5) | 0.57085 (10) | 0.0204 (8) | |
H2A | 0.6154 | 1.3790 | 0.5911 | 0.024* | |
C3 | 0.7137 (4) | 1.4481 (5) | 0.54222 (11) | 0.0220 (8) | |
H3A | 0.6727 | 1.5494 | 0.5426 | 0.026* | |
C4 | 0.8083 (4) | 1.4014 (4) | 0.51234 (10) | 0.0193 (8) | |
C5 | 0.8671 (4) | 1.2562 (4) | 0.51232 (10) | 0.0177 (7) | |
H5A | 0.9322 | 1.2241 | 0.4922 | 0.021* | |
C6 | 0.9580 (5) | 0.7964 (4) | 0.56542 (10) | 0.0177 (8) | |
C7 | 1.0704 (4) | 0.6625 (4) | 0.56195 (10) | 0.0196 (8) | |
H7A | 1.0683 | 0.6216 | 0.5358 | 0.024* | |
H7B | 1.1761 | 0.6986 | 0.5674 | 0.024* | |
C8 | 1.1075 (4) | 0.4079 (4) | 0.58550 (10) | 0.0178 (8) | |
C9 | 1.0630 (5) | 0.2962 (4) | 0.61188 (10) | 0.0211 (9) | |
H9A | 0.9848 | 0.3175 | 0.6299 | 0.025* | |
C10 | 1.1351 (5) | 0.1534 (5) | 0.61129 (11) | 0.0254 (9) | |
H10A | 1.1049 | 0.0769 | 0.6290 | 0.030* | |
C11 | 1.2500 (5) | 0.1206 (5) | 0.58536 (11) | 0.0277 (10) | |
H11A | 1.2991 | 0.0230 | 0.5854 | 0.033* | |
C12 | 1.2921 (5) | 0.2316 (5) | 0.55947 (12) | 0.0283 (10) | |
H12A | 1.3699 | 0.2092 | 0.5414 | 0.034* | |
C13 | 1.2226 (5) | 0.3765 (5) | 0.55927 (11) | 0.0235 (9) | |
H13A | 1.2535 | 0.4524 | 0.5415 | 0.028* | |
H1N1 | 0.881 (5) | 1.068 (3) | 0.5407 (12) | 0.044 (14)* | |
H1N2 | 0.754 (5) | 1.002 (3) | 0.5955 (13) | 0.048 (16)* | |
H2N2 | 0.665 (5) | 1.123 (6) | 0.6174 (9) | 0.066 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0268 (2) | 0.0230 (2) | 0.02226 (17) | 0.00121 (18) | 0.00088 (18) | 0.00592 (17) |
O1 | 0.0260 (14) | 0.0159 (13) | 0.0203 (13) | 0.0051 (13) | 0.0058 (12) | 0.0047 (11) |
O2 | 0.0299 (16) | 0.0215 (14) | 0.0241 (13) | 0.0079 (13) | 0.0103 (13) | 0.0050 (11) |
O3 | 0.0276 (16) | 0.0194 (14) | 0.0215 (13) | 0.0050 (12) | 0.0059 (12) | 0.0068 (11) |
N1 | 0.0152 (16) | 0.0165 (16) | 0.0185 (14) | 0.0039 (13) | −0.0002 (12) | 0.0002 (13) |
N2 | 0.0267 (19) | 0.0196 (18) | 0.0191 (17) | 0.0015 (14) | 0.0049 (15) | −0.0023 (14) |
C1 | 0.0165 (19) | 0.0163 (19) | 0.0184 (19) | −0.0002 (15) | −0.0003 (15) | −0.0009 (15) |
C2 | 0.021 (2) | 0.022 (2) | 0.0188 (17) | 0.0049 (16) | 0.0010 (15) | −0.0012 (16) |
C3 | 0.024 (2) | 0.017 (2) | 0.0245 (19) | 0.0036 (17) | −0.0018 (16) | 0.0000 (16) |
C4 | 0.020 (2) | 0.020 (2) | 0.0173 (17) | −0.0003 (15) | 0.0007 (15) | −0.0013 (15) |
C5 | 0.0171 (19) | 0.0211 (19) | 0.0149 (16) | −0.0009 (15) | 0.0034 (15) | −0.0011 (15) |
C6 | 0.0188 (19) | 0.0177 (18) | 0.0167 (18) | 0.0003 (16) | −0.0011 (16) | −0.0006 (14) |
C7 | 0.023 (2) | 0.018 (2) | 0.0177 (17) | 0.0005 (16) | 0.0042 (15) | −0.0003 (15) |
C8 | 0.021 (2) | 0.0114 (17) | 0.0208 (18) | 0.0018 (14) | −0.0052 (16) | −0.0048 (15) |
C9 | 0.028 (2) | 0.0173 (19) | 0.0186 (18) | −0.0009 (16) | −0.0017 (16) | 0.0010 (15) |
C10 | 0.031 (2) | 0.0176 (19) | 0.028 (2) | −0.001 (2) | −0.0101 (18) | 0.0037 (17) |
C11 | 0.029 (2) | 0.018 (2) | 0.036 (2) | 0.0082 (18) | −0.0110 (19) | −0.0085 (18) |
C12 | 0.028 (2) | 0.026 (2) | 0.032 (2) | 0.0052 (19) | 0.0004 (19) | −0.0031 (19) |
C13 | 0.026 (2) | 0.022 (2) | 0.023 (2) | 0.0039 (17) | −0.0006 (17) | 0.0008 (17) |
Br1—C4 | 1.895 (4) | C4—C5 | 1.362 (5) |
O1—C8 | 1.372 (4) | C5—H5A | 0.9500 |
O1—C7 | 1.427 (4) | C6—C7 | 1.524 (5) |
O2—C6 | 1.242 (4) | C7—H7A | 0.9900 |
O3—C6 | 1.270 (4) | C7—H7B | 0.9900 |
N1—C1 | 1.353 (5) | C8—C13 | 1.390 (5) |
N1—C5 | 1.356 (4) | C8—C9 | 1.400 (5) |
N1—H1N1 | 0.876 (10) | C9—C10 | 1.390 (5) |
N2—C1 | 1.332 (5) | C9—H9A | 0.9500 |
N2—H1N2 | 0.872 (10) | C10—C11 | 1.384 (6) |
N2—H2N2 | 0.870 (10) | C10—H10A | 0.9500 |
C1—C2 | 1.414 (5) | C11—C12 | 1.379 (6) |
C2—C3 | 1.366 (5) | C11—H11A | 0.9500 |
C2—H2A | 0.9500 | C12—C13 | 1.398 (6) |
C3—C4 | 1.398 (5) | C12—H12A | 0.9500 |
C3—H3A | 0.9500 | C13—H13A | 0.9500 |
C8—O1—C7 | 117.0 (3) | O1—C7—C6 | 109.6 (3) |
C1—N1—C5 | 122.1 (3) | O1—C7—H7A | 109.7 |
C1—N1—H1N1 | 121 (3) | C6—C7—H7A | 109.7 |
C5—N1—H1N1 | 117 (3) | O1—C7—H7B | 109.7 |
C1—N2—H1N2 | 120 (3) | C6—C7—H7B | 109.7 |
C1—N2—H2N2 | 118 (4) | H7A—C7—H7B | 108.2 |
H1N2—N2—H2N2 | 121 (5) | O1—C8—C13 | 124.9 (3) |
N2—C1—N1 | 118.6 (3) | O1—C8—C9 | 114.8 (3) |
N2—C1—C2 | 123.1 (3) | C13—C8—C9 | 120.3 (3) |
N1—C1—C2 | 118.2 (3) | C10—C9—C8 | 119.0 (4) |
C3—C2—C1 | 119.9 (3) | C10—C9—H9A | 120.5 |
C3—C2—H2A | 120.0 | C8—C9—H9A | 120.5 |
C1—C2—H2A | 120.0 | C11—C10—C9 | 121.3 (4) |
C2—C3—C4 | 119.8 (4) | C11—C10—H10A | 119.4 |
C2—C3—H3A | 120.1 | C9—C10—H10A | 119.4 |
C4—C3—H3A | 120.1 | C12—C11—C10 | 119.0 (4) |
C5—C4—C3 | 119.4 (3) | C12—C11—H11A | 120.5 |
C5—C4—Br1 | 119.6 (3) | C10—C11—H11A | 120.5 |
C3—C4—Br1 | 121.0 (3) | C11—C12—C13 | 121.3 (4) |
N1—C5—C4 | 120.5 (3) | C11—C12—H12A | 119.3 |
N1—C5—H5A | 119.8 | C13—C12—H12A | 119.3 |
C4—C5—H5A | 119.8 | C8—C13—C12 | 119.0 (4) |
O2—C6—O3 | 126.6 (4) | C8—C13—H13A | 120.5 |
O2—C6—C7 | 120.9 (3) | C12—C13—H13A | 120.5 |
O3—C6—C7 | 112.6 (3) | ||
C5—N1—C1—N2 | 179.0 (3) | O3—C6—C7—O1 | −175.6 (3) |
C5—N1—C1—C2 | 0.6 (5) | C7—O1—C8—C13 | −0.9 (5) |
N2—C1—C2—C3 | −179.0 (4) | C7—O1—C8—C9 | 179.6 (3) |
N1—C1—C2—C3 | −0.5 (5) | O1—C8—C9—C10 | 179.3 (3) |
C1—C2—C3—C4 | 0.5 (6) | C13—C8—C9—C10 | −0.3 (6) |
C2—C3—C4—C5 | −0.5 (6) | C8—C9—C10—C11 | 0.4 (6) |
C2—C3—C4—Br1 | 179.3 (3) | C9—C10—C11—C12 | −0.7 (6) |
C1—N1—C5—C4 | −0.5 (5) | C10—C11—C12—C13 | 0.8 (6) |
C3—C4—C5—N1 | 0.5 (5) | O1—C8—C13—C12 | −179.1 (4) |
Br1—C4—C5—N1 | −179.3 (3) | C9—C8—C13—C12 | 0.5 (6) |
C8—O1—C7—C6 | 172.7 (3) | C11—C12—C13—C8 | −0.7 (6) |
O2—C6—C7—O1 | 4.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3 | 0.88 (1) | 1.70 (3) | 2.579 (4) | 176 (5) |
N2—H1N2···O2 | 0.87 (1) | 2.01 (3) | 2.877 (4) | 177 (4) |
N2—H2N2···O1i | 0.87 (1) | 2.41 (3) | 3.140 (4) | 142 (5) |
N2—H2N2···O2i | 0.87 (1) | 2.13 (3) | 2.900 (4) | 146 (5) |
C2—H2A···O2i | 0.95 | 2.55 | 3.193 (4) | 125 |
C5—H5A···O3ii | 0.95 | 2.42 | 3.047 (4) | 123 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+5/4; (ii) y, x, −z+1. |
Footnotes
‡Thomson Reuters ResearcherID: A-5599-2009.
Acknowledgements
The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for the TWAS–USM fellowship.
References
Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407. CrossRef CAS Web of Science Google Scholar
Ali, M. A. & Shaharyar, M. (2007). Bioorg. Med. Chem. 15, 1896–1902. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o664. CSD CrossRef IUCr Journals Google Scholar
Iqbal, A., Siddiqui, H. L., Ashraf, C. M., Ahmad, M. & Weaver, G. W. (2007). Molecules, 12, 245–254. Web of Science CrossRef PubMed CAS Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Khalib, N. C., Thanigaimani, K., Arshad, S. & Razak, I. A. (2013). Acta Cryst. E69, o1120. CSD CrossRef IUCr Journals Google Scholar
Kunsch, C., Luchoomun, J., Chen, X. L., Dodd, G. L., Karu, K. S., Meng, C. Q., Marino, E. M., Olliff, L. K., Piper, J. D., Qiu, F. H., Sikorski, J. A., Somers, P. K., Suen, K.-L., Thomas, S., Whalen, A. M., Wasserman, M. A. & Sundell, C. L. (2005). J. Pharmacol. Exp. Ther. 313, 492–501. Web of Science CrossRef PubMed CAS Google Scholar
Pérez-Pastén, R., García, R. V., Garduño, L., Reyes, E., Labarrios, F., Tamariz, J. & Chamorro, G. (2006). J. Pharm. Pharmacol. 58, 1343–1349. Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley. Google Scholar
Shaharyar, M., Siddiqui, A. A. & Asraf Ali, M. (2006). Bioorg. Med. Chem. Lett. 16, 4571–4574. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shinozuka, T., Shimada, K., Matsui, S., Yamane, T., Ama, M., Fukuda, T., Taki, M. & Naito, S. (2006). Bioorg. Med. Chem. Lett. 16, 1502–1505. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.