organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(5Z)-3-(2-Oxoprop­yl)-5-(3,4,5-tri­meth­­oxy­benzyl­­idene)-1,3-thia­zol­idine-2,4-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, fUniv. Lille, Inserm, CHU Lille, UMR-S 1172–JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France, and gKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 7 December 2016; accepted 7 December 2016; online 13 December 2016)

In the crystal of the title mol­ecule, C16H17NO6S, there are three sets of inter­molecular C—H⋯O hydrogen bonds, as well as two sets of inter­molecular C—H⋯π(ring) inter­actions. In addition, the thia­zol­idene rings participate in offset ππ stacking inter­actions [centroid–centroid distance = 3.685 (1) Å]. These generate small channels running parallel to the a axis with approximate cross-sections of 3.7 × 8.1 Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thia­zolidine-2,4-dione scaffold compounds are considered to be an important class of heterocycles due to their diverse biological activities. They have been reported to exhibit anti-cancer (Ashok & Vanaja, 2016[Ashok, D. & Vanaja, B. (2016). Russ. J. Gen. Chem. 86, 681-685.]; Wei et al., 2009[Wei, S., Yang, J., Lee, S.-L., Kulp, S. K. & Chen, C.-S. (2009). Cancer Lett. 276, 119-124.]; Xia et al., 2009[Xia, Z., Knaak, C., Ma, J., Beharry, Z. M., McInnes, C., Wang, W., Kraft, A. S. & Smith, C. D. (2009). J. Med. Chem. 52, 74-86.]), anti-plasmodial inhibitor (Sharma et al., 2015[Sharma, R. K., Younis, Y., Mugumbate, G., Njoroge, M., Gut, J., Rosenthal, P. J. & Chibale, K. (2015). Eur. J. Med. Chem. 90, 507-518.]), anti-leishmanial (Leite et al., 2016[Leite, F. H. A., Santiago, P. B. G. da S., Froes, T. Q., da Silva Filho, J., da Silva, S. G., Ximenes, R. M., de Faria, A. R., Brondani, D. J., de Albuquerque, J. F. C. & Castilho, M. S. (2016). Eur. J. Med. Chem. 123, 639-648.]), anti-inflammatory (Barros et al., 2010[Barros, C. D., Amato, A. A., de Oliveira, T. B., Iannini, K. B. R., da Silva, A. L., da Silva, T. G., Leite, E. S., Hernandes, M. Z., Lima, M., de do, C. A. & Galdino, S. L. (2010). Bioorg. Med. Chem. 18, 3805-3811.]), anti-microbial (Liu et al., 2011[Liu, X.-F., Zheng, C.-J., Sun, L.-P., Liu, X.-K. & Piao, H.-R. (2011). Eur. J. Med. Chem. 46, 3469-3473.]), anti-oxidant and anti-hyperglycemic activities (Koppireddi et al., 2013[Koppireddi, S., Komsani, J. R., Avula, S., Pombala, S., Vasamsetti, S., Kotamraju, S. & Yadla, R. (2013). Eur. J. Med. Chem. 66, 305-313.]; Oakes et al., 1994[Oakes, N. D., Kennedy, C. J., Jenkins, A. B., Laybutt, D. R., Chisholm, D. J. & Kraegen, E. W. (1994). Diabetes, 43, 1203-1210.]). In this context, we report herein the synthesis and crystal structure of the title compound.

In the title mol­ecule (Fig. 1[link]), the dihedral angle between the five- and six-membered ring is 17.67 (7)°. In the crystal, there are small channels of approximately 3.7 x 8.1 Å running parallel to the a axis (Fig. 2[link]). In addition to the three sets of C—H⋯O hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]), there is an offset ππ stacking inter­action between the thia­zol­idene ring and its counterpart at 1 − x, 1 − y, −z [centroid–centroid distance = 3.6854 (7) Å] and two inter­molecular C—H⋯π(ring) inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and S1/N1/C11–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O6i 0.942 (14) 2.398 (14) 3.3108 (14) 163.2 (12)
C7—H7A⋯O5ii 0.971 (15) 2.482 (15) 3.4434 (15) 170.4 (13)
C14—H14A⋯O5iii 1.016 (15) 2.335 (15) 3.2659 (14) 151.8 (11)
C7—H7CCg1iv 0.994 (15) 2.755 (15) 3.5131 (14) 133.3 (11)
C9—H9CCg2i 1.001 (14) 2.900 (15) 3.8441 (14) 157.5 (11)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z; (iv) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule, showing the atom-labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the a axis with C—H⋯O hydrogen bonds shown as dotted lines.
[Figure 3]
Figure 3
Detail of the inter­molecular inter­actions: offset π-stacking (purple dotted line); C—H⋯π(ring) (orange dotted lines); C—H⋯O (black dotted lines) [symmetry codes: (i) 1 − x, 1 − y, −z; (ii) −1 + x, y, z; (iii) −x, 1 − y, 1 − z].

Synthesis and crystallization

A mixture of 5-(3,4,5-tri­meth­oxy­benzyl­idene)-1,3-thia­zolidine-2,4-dione potassium salt (10 mmol, 3.33 g) and chloro­acetone (11 mmol, 1.02 g, 0.91 mL), in DMF (10 mL) was heated under gentle reflux for 8 h. The reaction mixture was cooled to room temperature and the resulting precipitate was filtered off, washed with water and recrystallized from ethanol and a few drops of dioxane to give good quality crystals suitable for X-ray diffraction (m.p. 411–413 K, 86% yield).

1H NMR (300 MHz, DMSO-d6): d 2.52 (s, 3H), 3.74 (s, 3H), 3.84 (s, 6H), 4.68 (s, 2H), 6.96 (s, 2H), 7.92 (s, 1H); 13C NMR (75 MHz, DMSO-d6): d 27.5, 50.7, 56.5, 60.6, 108.1, 120.2, 128.7, 134.3, 140.1, 153.7 165.4, 167.2, and 200.8. m/z = 352 [M + H]+.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H17NO6S
Mr 351.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.2771 (5), 9.9612 (7), 11.9257 (8)
α, β, γ (°) 78.778 (1), 75.616 (1), 72.829 (1)
V3) 793.16 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.33 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.88, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 15337, 4235, 3660
Rint 0.026
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.12
No. of reflections 4235
No. of parameters 285
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.53, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(5Z)-3-(2-Oxopropyl)-5-(3,4,5-trimethoxybenzylidene)-1,3-thiazolidine-2,4-dione top
Crystal data top
C16H17NO6SZ = 2
Mr = 351.36F(000) = 368
Triclinic, P1Dx = 1.471 Mg m3
a = 7.2771 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9612 (7) ÅCell parameters from 9211 reflections
c = 11.9257 (8) Åθ = 2.6–29.3°
α = 78.778 (1)°µ = 0.24 mm1
β = 75.616 (1)°T = 100 K
γ = 72.829 (1)°Block, colourless
V = 793.16 (9) Å30.33 × 0.22 × 0.21 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4235 independent reflections
Radiation source: fine-focus sealed tube3660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 1.8°
φ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1313
Tmin = 0.88, Tmax = 0.95l = 1616
15337 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.111All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.0197P]
where P = (Fo2 + 2Fc2)/3
4235 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames,

each of width 0.5° in ω, colllected at φ = 0.00,

90.00 and 180.00° and 2 sets of 800 frames, each of

width 0.45° in φ, collected at ω = –30.00 and 210.00°.

The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48040 (4)0.43973 (3)0.23681 (2)0.01742 (10)
O10.03935 (12)0.33614 (9)0.63528 (7)0.01876 (18)
O20.28654 (12)0.25762 (9)0.64722 (7)0.01887 (18)
O30.33832 (11)0.15463 (9)0.46574 (7)0.01978 (19)
O40.52749 (13)0.21005 (10)0.00080 (7)0.0234 (2)
O50.80964 (14)0.50044 (10)0.11411 (8)0.0261 (2)
O60.97444 (13)0.12856 (9)0.08413 (7)0.02220 (19)
N10.68693 (13)0.35869 (10)0.03734 (8)0.0158 (2)
C10.12221 (16)0.26129 (12)0.33290 (9)0.0155 (2)
C20.15413 (16)0.30468 (12)0.42980 (9)0.0161 (2)
H20.270 (2)0.3321 (17)0.4249 (14)0.030 (4)*
C30.02037 (16)0.29904 (11)0.53540 (9)0.0149 (2)
C40.14759 (16)0.25128 (11)0.54493 (9)0.0153 (2)
C50.17503 (16)0.20396 (12)0.44871 (10)0.0158 (2)
C60.04092 (16)0.20892 (12)0.34351 (10)0.0159 (2)
H60.058 (2)0.1776 (14)0.2782 (13)0.021 (4)*
C70.21364 (18)0.38004 (13)0.62923 (10)0.0199 (2)
H7A0.203 (2)0.4033 (16)0.7063 (13)0.027 (4)*
H7B0.328 (2)0.2998 (15)0.6124 (13)0.022 (4)*
H7C0.218 (2)0.4641 (15)0.5688 (13)0.020 (3)*
C80.2732 (2)0.12561 (14)0.72236 (11)0.0234 (3)
H8A0.297 (2)0.0581 (17)0.6826 (14)0.030 (4)*
H8B0.382 (2)0.1412 (16)0.7911 (14)0.029 (4)*
H8C0.145 (3)0.0923 (17)0.7438 (14)0.034 (4)*
C90.33885 (18)0.07211 (13)0.38013 (11)0.0201 (2)
H9A0.228 (2)0.0124 (15)0.3783 (12)0.022 (4)*
H9B0.462 (2)0.0468 (14)0.4033 (12)0.017 (3)*
H9C0.333 (2)0.1296 (15)0.3011 (13)0.022 (4)*
C100.25748 (16)0.25979 (12)0.21977 (10)0.0166 (2)
H100.239 (2)0.2061 (14)0.1678 (12)0.017 (3)*
C110.40602 (16)0.32201 (12)0.17634 (9)0.0157 (2)
C120.53935 (16)0.28850 (12)0.06331 (9)0.0160 (2)
C130.68703 (17)0.43854 (12)0.12030 (10)0.0177 (2)
C140.85791 (16)0.32219 (12)0.05548 (10)0.0166 (2)
H14A0.922 (2)0.4040 (16)0.0822 (13)0.024 (4)*
H14B0.819 (2)0.3053 (15)0.1204 (13)0.020 (3)*
C151.00626 (16)0.18907 (12)0.01512 (9)0.0162 (2)
C161.19038 (18)0.14177 (14)0.10274 (11)0.0206 (2)
H16A1.154 (2)0.1391 (18)0.1711 (15)0.037 (4)*
H16B1.270 (2)0.0529 (17)0.0750 (14)0.025 (4)*
H16C1.254 (3)0.2144 (19)0.1146 (16)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01803 (16)0.02014 (16)0.01488 (15)0.00891 (11)0.00277 (11)0.00591 (11)
O10.0189 (4)0.0252 (4)0.0137 (4)0.0090 (3)0.0002 (3)0.0052 (3)
O20.0161 (4)0.0196 (4)0.0167 (4)0.0048 (3)0.0070 (3)0.0055 (3)
O30.0143 (4)0.0281 (4)0.0190 (4)0.0113 (3)0.0031 (3)0.0072 (3)
O40.0235 (4)0.0344 (5)0.0172 (4)0.0160 (4)0.0027 (3)0.0105 (3)
O50.0280 (5)0.0328 (5)0.0228 (4)0.0206 (4)0.0054 (4)0.0099 (4)
O60.0254 (5)0.0255 (4)0.0154 (4)0.0080 (4)0.0023 (3)0.0022 (3)
N10.0134 (4)0.0203 (5)0.0133 (4)0.0073 (4)0.0027 (3)0.0039 (3)
C10.0135 (5)0.0184 (5)0.0136 (5)0.0058 (4)0.0004 (4)0.0014 (4)
C20.0136 (5)0.0196 (5)0.0154 (5)0.0065 (4)0.0009 (4)0.0024 (4)
C30.0148 (5)0.0150 (5)0.0139 (5)0.0029 (4)0.0017 (4)0.0028 (4)
C40.0133 (5)0.0151 (5)0.0143 (5)0.0033 (4)0.0031 (4)0.0027 (4)
C50.0114 (5)0.0169 (5)0.0181 (5)0.0052 (4)0.0001 (4)0.0016 (4)
C60.0141 (5)0.0194 (5)0.0144 (5)0.0061 (4)0.0003 (4)0.0031 (4)
C70.0210 (6)0.0246 (6)0.0170 (5)0.0091 (5)0.0039 (4)0.0045 (4)
C80.0253 (6)0.0266 (6)0.0151 (5)0.0088 (5)0.0036 (5)0.0021 (5)
C90.0193 (6)0.0239 (6)0.0206 (6)0.0111 (5)0.0029 (4)0.0039 (5)
C100.0146 (5)0.0215 (5)0.0140 (5)0.0062 (4)0.0009 (4)0.0034 (4)
C110.0142 (5)0.0190 (5)0.0136 (5)0.0047 (4)0.0010 (4)0.0034 (4)
C120.0134 (5)0.0205 (5)0.0142 (5)0.0067 (4)0.0009 (4)0.0017 (4)
C130.0178 (5)0.0192 (5)0.0165 (5)0.0080 (4)0.0001 (4)0.0028 (4)
C140.0138 (5)0.0207 (5)0.0143 (5)0.0072 (4)0.0025 (4)0.0029 (4)
C150.0167 (5)0.0197 (5)0.0158 (5)0.0092 (4)0.0021 (4)0.0051 (4)
C160.0162 (5)0.0231 (6)0.0217 (6)0.0063 (5)0.0005 (4)0.0049 (5)
Geometric parameters (Å, º) top
S1—C111.7567 (11)C5—C61.3874 (15)
S1—C131.7747 (12)C6—H60.942 (14)
O1—C31.3629 (13)C7—H7A0.971 (15)
O1—C71.4405 (14)C7—H7B0.979 (15)
O2—C41.3762 (13)C7—H7C0.994 (15)
O2—C81.4320 (15)C8—H8A0.969 (16)
O3—C51.3714 (13)C8—H8B0.988 (15)
O3—C91.4312 (14)C8—H8C0.977 (17)
O4—C121.2134 (14)C9—H9A0.980 (15)
O5—C131.2067 (14)C9—H9B0.966 (14)
O6—C151.2191 (14)C9—H9C1.001 (14)
N1—C131.3851 (14)C10—C111.3466 (15)
N1—C121.3900 (14)C10—H100.948 (14)
N1—C141.4529 (14)C11—C121.4845 (15)
C1—C61.4009 (14)C14—C151.5231 (16)
C1—C21.4012 (15)C14—H14A1.016 (15)
C1—C101.4590 (15)C14—H14B0.947 (14)
C2—C31.3901 (15)C15—C161.4941 (16)
C2—H20.946 (16)C16—H16A0.926 (17)
C3—C41.4094 (15)C16—H16B0.951 (16)
C4—C51.3996 (15)C16—H16C0.937 (19)
C11—S1—C1391.48 (5)H8A—C8—H8C111.8 (13)
C3—O1—C7116.50 (9)H8B—C8—H8C112.4 (13)
C4—O2—C8114.25 (8)O3—C9—H9A110.0 (8)
C5—O3—C9115.87 (9)O3—C9—H9B106.0 (8)
C13—N1—C12116.31 (9)H9A—C9—H9B111.2 (12)
C13—N1—C14120.69 (9)O3—C9—H9C110.8 (8)
C12—N1—C14121.22 (9)H9A—C9—H9C110.3 (12)
C6—C1—C2120.03 (10)H9B—C9—H9C108.4 (11)
C6—C1—C10116.52 (9)C11—C10—C1130.61 (10)
C2—C1—C10123.37 (10)C11—C10—H10114.0 (9)
C3—C2—C1119.64 (10)C1—C10—H10115.4 (9)
C3—C2—H2120.0 (9)C10—C11—C12119.86 (10)
C1—C2—H2120.3 (9)C10—C11—S1129.49 (9)
O1—C3—C2124.35 (10)C12—C11—S1110.60 (8)
O1—C3—C4115.33 (9)O4—C12—N1123.07 (10)
C2—C3—C4120.32 (10)O4—C12—C11126.41 (10)
O2—C4—C5120.89 (10)N1—C12—C11110.51 (9)
O2—C4—C3119.44 (9)O5—C13—N1124.82 (11)
C5—C4—C3119.61 (10)O5—C13—S1124.25 (9)
O3—C5—C6123.72 (10)N1—C13—S1110.93 (8)
O3—C5—C4116.29 (10)N1—C14—C15111.00 (9)
C6—C5—C4119.99 (10)N1—C14—H14A110.1 (8)
C5—C6—C1120.34 (10)C15—C14—H14A109.8 (8)
C5—C6—H6120.6 (9)N1—C14—H14B109.6 (9)
C1—C6—H6119.1 (9)C15—C14—H14B108.5 (9)
O1—C7—H7A105.8 (9)H14A—C14—H14B107.8 (12)
O1—C7—H7B108.4 (9)O6—C15—C16123.34 (11)
H7A—C7—H7B109.4 (12)O6—C15—C14120.60 (10)
O1—C7—H7C109.2 (8)C16—C15—C14116.04 (10)
H7A—C7—H7C111.3 (12)C15—C16—H16A107.2 (10)
H7B—C7—H7C112.5 (12)C15—C16—H16B111.7 (10)
O2—C8—H8A108.7 (9)H16A—C16—H16B112.3 (14)
O2—C8—H8B107.5 (9)C15—C16—H16C104.2 (11)
H8A—C8—H8B106.5 (13)H16A—C16—H16C109.2 (15)
O2—C8—H8C109.8 (10)H16B—C16—H16C111.7 (14)
C6—C1—C2—C31.73 (17)C2—C1—C10—C1115.5 (2)
C10—C1—C2—C3178.19 (10)C1—C10—C11—C12172.00 (11)
C7—O1—C3—C21.74 (15)C1—C10—C11—S15.3 (2)
C7—O1—C3—C4177.64 (10)C13—S1—C11—C10175.08 (11)
C1—C2—C3—O1178.73 (10)C13—S1—C11—C122.42 (8)
C1—C2—C3—C40.62 (17)C13—N1—C12—O4176.61 (11)
C8—O2—C4—C582.74 (13)C14—N1—C12—O411.70 (17)
C8—O2—C4—C3100.09 (12)C13—N1—C12—C112.50 (14)
O1—C3—C4—O26.01 (15)C14—N1—C12—C11167.41 (9)
C2—C3—C4—O2174.59 (9)C10—C11—C12—O41.81 (18)
O1—C3—C4—C5176.78 (10)S1—C11—C12—O4179.59 (10)
C2—C3—C4—C52.62 (16)C10—C11—C12—N1177.26 (10)
C9—O3—C5—C616.49 (16)S1—C11—C12—N10.52 (12)
C9—O3—C5—C4163.65 (10)C12—N1—C13—O5176.35 (11)
O2—C4—C5—O34.97 (15)C14—N1—C13—O511.36 (18)
C3—C4—C5—O3177.86 (10)C12—N1—C13—S14.36 (13)
O2—C4—C5—C6174.89 (10)C14—N1—C13—S1169.35 (8)
C3—C4—C5—C62.27 (16)C11—S1—C13—O5176.90 (11)
O3—C5—C6—C1179.79 (10)C11—S1—C13—N13.80 (9)
C4—C5—C6—C10.06 (17)C13—N1—C14—C1585.05 (12)
C2—C1—C6—C52.08 (17)C12—N1—C14—C1579.20 (12)
C10—C1—C6—C5178.78 (10)N1—C14—C15—O60.64 (14)
C6—C1—C10—C11167.88 (12)N1—C14—C15—C16179.20 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and S1/N1/C11–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O6i0.942 (14)2.398 (14)3.3108 (14)163.2 (12)
C7—H7A···O5ii0.971 (15)2.482 (15)3.4434 (15)170.4 (13)
C14—H14A···O5iii1.016 (15)2.335 (15)3.2659 (14)151.8 (11)
C7—H7C···Cg1iv0.994 (15)2.755 (15)3.5131 (14)133.3 (11)
C9—H9C···Cg2i1.001 (14)2.900 (15)3.8441 (14)157.5 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z; (iv) x, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAshok, D. & Vanaja, B. (2016). Russ. J. Gen. Chem. 86, 681–685.  CrossRef CAS Google Scholar
First citationBarros, C. D., Amato, A. A., de Oliveira, T. B., Iannini, K. B. R., da Silva, A. L., da Silva, T. G., Leite, E. S., Hernandes, M. Z., Lima, M., de do, C. A. & Galdino, S. L. (2010). Bioorg. Med. Chem. 18, 3805–3811.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoppireddi, S., Komsani, J. R., Avula, S., Pombala, S., Vasamsetti, S., Kotamraju, S. & Yadla, R. (2013). Eur. J. Med. Chem. 66, 305–313.  CSD CrossRef CAS Google Scholar
First citationLeite, F. H. A., Santiago, P. B. G. da S., Froes, T. Q., da Silva Filho, J., da Silva, S. G., Ximenes, R. M., de Faria, A. R., Brondani, D. J., de Albuquerque, J. F. C. & Castilho, M. S. (2016). Eur. J. Med. Chem. 123, 639–648.  CrossRef CAS Google Scholar
First citationLiu, X.-F., Zheng, C.-J., Sun, L.-P., Liu, X.-K. & Piao, H.-R. (2011). Eur. J. Med. Chem. 46, 3469–3473.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOakes, N. D., Kennedy, C. J., Jenkins, A. B., Laybutt, D. R., Chisholm, D. J. & Kraegen, E. W. (1994). Diabetes, 43, 1203–1210.  CrossRef CAS Google Scholar
First citationSharma, R. K., Younis, Y., Mugumbate, G., Njoroge, M., Gut, J., Rosenthal, P. J. & Chibale, K. (2015). Eur. J. Med. Chem. 90, 507–518.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWei, S., Yang, J., Lee, S.-L., Kulp, S. K. & Chen, C.-S. (2009). Cancer Lett. 276, 119–124.  CrossRef CAS Google Scholar
First citationXia, Z., Knaak, C., Ma, J., Beharry, Z. M., McInnes, C., Wang, W., Kraft, A. S. & Smith, C. D. (2009). J. Med. Chem. 52, 74–86.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds