organic compounds
(5Z)-3-(2-Oxopropyl)-5-(3,4,5-trimethoxybenzylidene)-1,3-thiazolidine-2,4-dione
aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, fUniv. Lille, Inserm, CHU Lille, UMR-S 1172–JPArc–Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France, and gKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the crystal of the title molecule, C16H17NO6S, there are three sets of intermolecular C—H⋯O hydrogen bonds, as well as two sets of intermolecular C—H⋯π(ring) interactions. In addition, the thiazolidene rings participate in offset π–π stacking interactions [centroid–centroid distance = 3.685 (1) Å]. These generate small channels running parallel to the a axis with approximate cross-sections of 3.7 × 8.1 Å.
Keywords: crystal structure; hydrogen bonds; C—H⋯π(ring) interactions; thiazolidinones; azomethene.
CCDC reference: 1521358
Structure description
Thiazolidine-2,4-dione scaffold compounds are considered to be an important class of heterocycles due to their diverse biological activities. They have been reported to exhibit anti-cancer (Ashok & Vanaja, 2016; Wei et al., 2009; Xia et al., 2009), anti-plasmodial inhibitor (Sharma et al., 2015), anti-leishmanial (Leite et al., 2016), anti-inflammatory (Barros et al., 2010), anti-microbial (Liu et al., 2011), anti-oxidant and anti-hyperglycemic activities (Koppireddi et al., 2013; Oakes et al., 1994). In this context, we report herein the synthesis and of the title compound.
In the title molecule (Fig. 1), the dihedral angle between the five- and six-membered ring is 17.67 (7)°. In the crystal, there are small channels of approximately 3.7 x 8.1 Å running parallel to the a axis (Fig. 2). In addition to the three sets of C—H⋯O hydrogen bonds (Table 1 and Figs. 2 and 3), there is an offset π–π stacking interaction between the thiazolidene ring and its counterpart at 1 − x, 1 − y, −z [centroid–centroid distance = 3.6854 (7) Å] and two intermolecular C—H⋯π(ring) interactions (Table 1).
Synthesis and crystallization
A mixture of 5-(3,4,5-trimethoxybenzylidene)-1,3-thiazolidine-2,4-dione potassium salt (10 mmol, 3.33 g) and chloroacetone (11 mmol, 1.02 g, 0.91 mL), in DMF (10 mL) was heated under gentle reflux for 8 h. The reaction mixture was cooled to room temperature and the resulting precipitate was filtered off, washed with water and recrystallized from ethanol and a few drops of dioxane to give good quality crystals suitable for X-ray diffraction (m.p. 411–413 K, 86% yield).
1H NMR (300 MHz, DMSO-d6): d 2.52 (s, 3H), 3.74 (s, 3H), 3.84 (s, 6H), 4.68 (s, 2H), 6.96 (s, 2H), 7.92 (s, 1H); 13C NMR (75 MHz, DMSO-d6): d 27.5, 50.7, 56.5, 60.6, 108.1, 120.2, 128.7, 134.3, 140.1, 153.7 165.4, 167.2, and 200.8. m/z = 352 [M + H]+.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1521358
https://doi.org/10.1107/S2414314616019593/hg4018sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616019593/hg4018Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H17NO6S | Z = 2 |
Mr = 351.36 | F(000) = 368 |
Triclinic, P1 | Dx = 1.471 Mg m−3 |
a = 7.2771 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9612 (7) Å | Cell parameters from 9211 reflections |
c = 11.9257 (8) Å | θ = 2.6–29.3° |
α = 78.778 (1)° | µ = 0.24 mm−1 |
β = 75.616 (1)° | T = 100 K |
γ = 72.829 (1)° | Block, colourless |
V = 793.16 (9) Å3 | 0.33 × 0.22 × 0.21 mm |
Bruker SMART APEX CCD diffractometer | 4235 independent reflections |
Radiation source: fine-focus sealed tube | 3660 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.3°, θmin = 1.8° |
φ and ω scans | h = −10→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −13→13 |
Tmin = 0.88, Tmax = 0.95 | l = −16→16 |
15337 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.111 | All H-atom parameters refined |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0762P)2 + 0.0197P] where P = (Fo2 + 2Fc2)/3 |
4235 reflections | (Δ/σ)max < 0.001 |
285 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.48040 (4) | 0.43973 (3) | 0.23681 (2) | 0.01742 (10) | |
O1 | 0.03935 (12) | 0.33614 (9) | 0.63528 (7) | 0.01876 (18) | |
O2 | −0.28654 (12) | 0.25762 (9) | 0.64722 (7) | 0.01887 (18) | |
O3 | −0.33832 (11) | 0.15463 (9) | 0.46574 (7) | 0.01978 (19) | |
O4 | 0.52749 (13) | 0.21005 (10) | 0.00080 (7) | 0.0234 (2) | |
O5 | 0.80964 (14) | 0.50044 (10) | 0.11411 (8) | 0.0261 (2) | |
O6 | 0.97444 (13) | 0.12856 (9) | 0.08413 (7) | 0.02220 (19) | |
N1 | 0.68693 (13) | 0.35869 (10) | 0.03734 (8) | 0.0158 (2) | |
C1 | 0.12221 (16) | 0.26129 (12) | 0.33290 (9) | 0.0155 (2) | |
C2 | 0.15413 (16) | 0.30468 (12) | 0.42980 (9) | 0.0161 (2) | |
H2 | 0.270 (2) | 0.3321 (17) | 0.4249 (14) | 0.030 (4)* | |
C3 | 0.02037 (16) | 0.29904 (11) | 0.53540 (9) | 0.0149 (2) | |
C4 | −0.14759 (16) | 0.25128 (11) | 0.54493 (9) | 0.0153 (2) | |
C5 | −0.17503 (16) | 0.20396 (12) | 0.44871 (10) | 0.0158 (2) | |
C6 | −0.04092 (16) | 0.20892 (12) | 0.34351 (10) | 0.0159 (2) | |
H6 | −0.058 (2) | 0.1776 (14) | 0.2782 (13) | 0.021 (4)* | |
C7 | 0.21364 (18) | 0.38004 (13) | 0.62923 (10) | 0.0199 (2) | |
H7A | 0.203 (2) | 0.4033 (16) | 0.7063 (13) | 0.027 (4)* | |
H7B | 0.328 (2) | 0.2998 (15) | 0.6124 (13) | 0.022 (4)* | |
H7C | 0.218 (2) | 0.4641 (15) | 0.5688 (13) | 0.020 (3)* | |
C8 | −0.2732 (2) | 0.12561 (14) | 0.72236 (11) | 0.0234 (3) | |
H8A | −0.297 (2) | 0.0581 (17) | 0.6826 (14) | 0.030 (4)* | |
H8B | −0.382 (2) | 0.1412 (16) | 0.7911 (14) | 0.029 (4)* | |
H8C | −0.145 (3) | 0.0923 (17) | 0.7438 (14) | 0.034 (4)* | |
C9 | −0.33885 (18) | 0.07211 (13) | 0.38013 (11) | 0.0201 (2) | |
H9A | −0.228 (2) | −0.0124 (15) | 0.3783 (12) | 0.022 (4)* | |
H9B | −0.462 (2) | 0.0468 (14) | 0.4033 (12) | 0.017 (3)* | |
H9C | −0.333 (2) | 0.1296 (15) | 0.3011 (13) | 0.022 (4)* | |
C10 | 0.25748 (16) | 0.25979 (12) | 0.21977 (10) | 0.0166 (2) | |
H10 | 0.239 (2) | 0.2061 (14) | 0.1678 (12) | 0.017 (3)* | |
C11 | 0.40602 (16) | 0.32201 (12) | 0.17634 (9) | 0.0157 (2) | |
C12 | 0.53935 (16) | 0.28850 (12) | 0.06331 (9) | 0.0160 (2) | |
C13 | 0.68703 (17) | 0.43854 (12) | 0.12030 (10) | 0.0177 (2) | |
C14 | 0.85791 (16) | 0.32219 (12) | −0.05548 (10) | 0.0166 (2) | |
H14A | 0.922 (2) | 0.4040 (16) | −0.0822 (13) | 0.024 (4)* | |
H14B | 0.819 (2) | 0.3053 (15) | −0.1204 (13) | 0.020 (3)* | |
C15 | 1.00626 (16) | 0.18907 (12) | −0.01512 (9) | 0.0162 (2) | |
C16 | 1.19038 (18) | 0.14177 (14) | −0.10274 (11) | 0.0206 (2) | |
H16A | 1.154 (2) | 0.1391 (18) | −0.1711 (15) | 0.037 (4)* | |
H16B | 1.270 (2) | 0.0529 (17) | −0.0750 (14) | 0.025 (4)* | |
H16C | 1.254 (3) | 0.2144 (19) | −0.1146 (16) | 0.045 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01803 (16) | 0.02014 (16) | 0.01488 (15) | −0.00891 (11) | 0.00277 (11) | −0.00591 (11) |
O1 | 0.0189 (4) | 0.0252 (4) | 0.0137 (4) | −0.0090 (3) | −0.0002 (3) | −0.0052 (3) |
O2 | 0.0161 (4) | 0.0196 (4) | 0.0167 (4) | −0.0048 (3) | 0.0070 (3) | −0.0055 (3) |
O3 | 0.0143 (4) | 0.0281 (4) | 0.0190 (4) | −0.0113 (3) | 0.0031 (3) | −0.0072 (3) |
O4 | 0.0235 (4) | 0.0344 (5) | 0.0172 (4) | −0.0160 (4) | 0.0027 (3) | −0.0105 (3) |
O5 | 0.0280 (5) | 0.0328 (5) | 0.0228 (4) | −0.0206 (4) | 0.0054 (4) | −0.0099 (4) |
O6 | 0.0254 (5) | 0.0255 (4) | 0.0154 (4) | −0.0080 (4) | −0.0023 (3) | −0.0022 (3) |
N1 | 0.0134 (4) | 0.0203 (5) | 0.0133 (4) | −0.0073 (4) | 0.0027 (3) | −0.0039 (3) |
C1 | 0.0135 (5) | 0.0184 (5) | 0.0136 (5) | −0.0058 (4) | 0.0004 (4) | −0.0014 (4) |
C2 | 0.0136 (5) | 0.0196 (5) | 0.0154 (5) | −0.0065 (4) | −0.0009 (4) | −0.0024 (4) |
C3 | 0.0148 (5) | 0.0150 (5) | 0.0139 (5) | −0.0029 (4) | −0.0017 (4) | −0.0028 (4) |
C4 | 0.0133 (5) | 0.0151 (5) | 0.0143 (5) | −0.0033 (4) | 0.0031 (4) | −0.0027 (4) |
C5 | 0.0114 (5) | 0.0169 (5) | 0.0181 (5) | −0.0052 (4) | −0.0001 (4) | −0.0016 (4) |
C6 | 0.0141 (5) | 0.0194 (5) | 0.0144 (5) | −0.0061 (4) | −0.0003 (4) | −0.0031 (4) |
C7 | 0.0210 (6) | 0.0246 (6) | 0.0170 (5) | −0.0091 (5) | −0.0039 (4) | −0.0045 (4) |
C8 | 0.0253 (6) | 0.0266 (6) | 0.0151 (5) | −0.0088 (5) | 0.0036 (5) | −0.0021 (5) |
C9 | 0.0193 (6) | 0.0239 (6) | 0.0206 (6) | −0.0111 (5) | −0.0029 (4) | −0.0039 (5) |
C10 | 0.0146 (5) | 0.0215 (5) | 0.0140 (5) | −0.0062 (4) | −0.0009 (4) | −0.0034 (4) |
C11 | 0.0142 (5) | 0.0190 (5) | 0.0136 (5) | −0.0047 (4) | −0.0010 (4) | −0.0034 (4) |
C12 | 0.0134 (5) | 0.0205 (5) | 0.0142 (5) | −0.0067 (4) | −0.0009 (4) | −0.0017 (4) |
C13 | 0.0178 (5) | 0.0192 (5) | 0.0165 (5) | −0.0080 (4) | −0.0001 (4) | −0.0028 (4) |
C14 | 0.0138 (5) | 0.0207 (5) | 0.0143 (5) | −0.0072 (4) | 0.0025 (4) | −0.0029 (4) |
C15 | 0.0167 (5) | 0.0197 (5) | 0.0158 (5) | −0.0092 (4) | −0.0021 (4) | −0.0051 (4) |
C16 | 0.0162 (5) | 0.0231 (6) | 0.0217 (6) | −0.0063 (5) | 0.0005 (4) | −0.0049 (5) |
S1—C11 | 1.7567 (11) | C5—C6 | 1.3874 (15) |
S1—C13 | 1.7747 (12) | C6—H6 | 0.942 (14) |
O1—C3 | 1.3629 (13) | C7—H7A | 0.971 (15) |
O1—C7 | 1.4405 (14) | C7—H7B | 0.979 (15) |
O2—C4 | 1.3762 (13) | C7—H7C | 0.994 (15) |
O2—C8 | 1.4320 (15) | C8—H8A | 0.969 (16) |
O3—C5 | 1.3714 (13) | C8—H8B | 0.988 (15) |
O3—C9 | 1.4312 (14) | C8—H8C | 0.977 (17) |
O4—C12 | 1.2134 (14) | C9—H9A | 0.980 (15) |
O5—C13 | 1.2067 (14) | C9—H9B | 0.966 (14) |
O6—C15 | 1.2191 (14) | C9—H9C | 1.001 (14) |
N1—C13 | 1.3851 (14) | C10—C11 | 1.3466 (15) |
N1—C12 | 1.3900 (14) | C10—H10 | 0.948 (14) |
N1—C14 | 1.4529 (14) | C11—C12 | 1.4845 (15) |
C1—C6 | 1.4009 (14) | C14—C15 | 1.5231 (16) |
C1—C2 | 1.4012 (15) | C14—H14A | 1.016 (15) |
C1—C10 | 1.4590 (15) | C14—H14B | 0.947 (14) |
C2—C3 | 1.3901 (15) | C15—C16 | 1.4941 (16) |
C2—H2 | 0.946 (16) | C16—H16A | 0.926 (17) |
C3—C4 | 1.4094 (15) | C16—H16B | 0.951 (16) |
C4—C5 | 1.3996 (15) | C16—H16C | 0.937 (19) |
C11—S1—C13 | 91.48 (5) | H8A—C8—H8C | 111.8 (13) |
C3—O1—C7 | 116.50 (9) | H8B—C8—H8C | 112.4 (13) |
C4—O2—C8 | 114.25 (8) | O3—C9—H9A | 110.0 (8) |
C5—O3—C9 | 115.87 (9) | O3—C9—H9B | 106.0 (8) |
C13—N1—C12 | 116.31 (9) | H9A—C9—H9B | 111.2 (12) |
C13—N1—C14 | 120.69 (9) | O3—C9—H9C | 110.8 (8) |
C12—N1—C14 | 121.22 (9) | H9A—C9—H9C | 110.3 (12) |
C6—C1—C2 | 120.03 (10) | H9B—C9—H9C | 108.4 (11) |
C6—C1—C10 | 116.52 (9) | C11—C10—C1 | 130.61 (10) |
C2—C1—C10 | 123.37 (10) | C11—C10—H10 | 114.0 (9) |
C3—C2—C1 | 119.64 (10) | C1—C10—H10 | 115.4 (9) |
C3—C2—H2 | 120.0 (9) | C10—C11—C12 | 119.86 (10) |
C1—C2—H2 | 120.3 (9) | C10—C11—S1 | 129.49 (9) |
O1—C3—C2 | 124.35 (10) | C12—C11—S1 | 110.60 (8) |
O1—C3—C4 | 115.33 (9) | O4—C12—N1 | 123.07 (10) |
C2—C3—C4 | 120.32 (10) | O4—C12—C11 | 126.41 (10) |
O2—C4—C5 | 120.89 (10) | N1—C12—C11 | 110.51 (9) |
O2—C4—C3 | 119.44 (9) | O5—C13—N1 | 124.82 (11) |
C5—C4—C3 | 119.61 (10) | O5—C13—S1 | 124.25 (9) |
O3—C5—C6 | 123.72 (10) | N1—C13—S1 | 110.93 (8) |
O3—C5—C4 | 116.29 (10) | N1—C14—C15 | 111.00 (9) |
C6—C5—C4 | 119.99 (10) | N1—C14—H14A | 110.1 (8) |
C5—C6—C1 | 120.34 (10) | C15—C14—H14A | 109.8 (8) |
C5—C6—H6 | 120.6 (9) | N1—C14—H14B | 109.6 (9) |
C1—C6—H6 | 119.1 (9) | C15—C14—H14B | 108.5 (9) |
O1—C7—H7A | 105.8 (9) | H14A—C14—H14B | 107.8 (12) |
O1—C7—H7B | 108.4 (9) | O6—C15—C16 | 123.34 (11) |
H7A—C7—H7B | 109.4 (12) | O6—C15—C14 | 120.60 (10) |
O1—C7—H7C | 109.2 (8) | C16—C15—C14 | 116.04 (10) |
H7A—C7—H7C | 111.3 (12) | C15—C16—H16A | 107.2 (10) |
H7B—C7—H7C | 112.5 (12) | C15—C16—H16B | 111.7 (10) |
O2—C8—H8A | 108.7 (9) | H16A—C16—H16B | 112.3 (14) |
O2—C8—H8B | 107.5 (9) | C15—C16—H16C | 104.2 (11) |
H8A—C8—H8B | 106.5 (13) | H16A—C16—H16C | 109.2 (15) |
O2—C8—H8C | 109.8 (10) | H16B—C16—H16C | 111.7 (14) |
C6—C1—C2—C3 | −1.73 (17) | C2—C1—C10—C11 | −15.5 (2) |
C10—C1—C2—C3 | −178.19 (10) | C1—C10—C11—C12 | 172.00 (11) |
C7—O1—C3—C2 | −1.74 (15) | C1—C10—C11—S1 | −5.3 (2) |
C7—O1—C3—C4 | 177.64 (10) | C13—S1—C11—C10 | 175.08 (11) |
C1—C2—C3—O1 | 178.73 (10) | C13—S1—C11—C12 | −2.42 (8) |
C1—C2—C3—C4 | −0.62 (17) | C13—N1—C12—O4 | −176.61 (11) |
C8—O2—C4—C5 | 82.74 (13) | C14—N1—C12—O4 | −11.70 (17) |
C8—O2—C4—C3 | −100.09 (12) | C13—N1—C12—C11 | 2.50 (14) |
O1—C3—C4—O2 | 6.01 (15) | C14—N1—C12—C11 | 167.41 (9) |
C2—C3—C4—O2 | −174.59 (9) | C10—C11—C12—O4 | 1.81 (18) |
O1—C3—C4—C5 | −176.78 (10) | S1—C11—C12—O4 | 179.59 (10) |
C2—C3—C4—C5 | 2.62 (16) | C10—C11—C12—N1 | −177.26 (10) |
C9—O3—C5—C6 | 16.49 (16) | S1—C11—C12—N1 | 0.52 (12) |
C9—O3—C5—C4 | −163.65 (10) | C12—N1—C13—O5 | 176.35 (11) |
O2—C4—C5—O3 | −4.97 (15) | C14—N1—C13—O5 | 11.36 (18) |
C3—C4—C5—O3 | 177.86 (10) | C12—N1—C13—S1 | −4.36 (13) |
O2—C4—C5—C6 | 174.89 (10) | C14—N1—C13—S1 | −169.35 (8) |
C3—C4—C5—C6 | −2.27 (16) | C11—S1—C13—O5 | −176.90 (11) |
O3—C5—C6—C1 | 179.79 (10) | C11—S1—C13—N1 | 3.80 (9) |
C4—C5—C6—C1 | −0.06 (17) | C13—N1—C14—C15 | 85.05 (12) |
C2—C1—C6—C5 | 2.08 (17) | C12—N1—C14—C15 | −79.20 (12) |
C10—C1—C6—C5 | 178.78 (10) | N1—C14—C15—O6 | −0.64 (14) |
C6—C1—C10—C11 | 167.88 (12) | N1—C14—C15—C16 | −179.20 (9) |
Cg1 and Cg2 are the centroids of the C1–C6 and S1/N1/C11–C13 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O6i | 0.942 (14) | 2.398 (14) | 3.3108 (14) | 163.2 (12) |
C7—H7A···O5ii | 0.971 (15) | 2.482 (15) | 3.4434 (15) | 170.4 (13) |
C14—H14A···O5iii | 1.016 (15) | 2.335 (15) | 3.2659 (14) | 151.8 (11) |
C7—H7C···Cg1iv | 0.994 (15) | 2.755 (15) | 3.5131 (14) | 133.3 (11) |
C9—H9C···Cg2i | 1.001 (14) | 2.900 (15) | 3.8441 (14) | 157.5 (11) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z; (iv) −x, −y+1, −z+1. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Ashok, D. & Vanaja, B. (2016). Russ. J. Gen. Chem. 86, 681–685. CrossRef CAS Google Scholar
Barros, C. D., Amato, A. A., de Oliveira, T. B., Iannini, K. B. R., da Silva, A. L., da Silva, T. G., Leite, E. S., Hernandes, M. Z., Lima, M., de do, C. A. & Galdino, S. L. (2010). Bioorg. Med. Chem. 18, 3805–3811. CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Koppireddi, S., Komsani, J. R., Avula, S., Pombala, S., Vasamsetti, S., Kotamraju, S. & Yadla, R. (2013). Eur. J. Med. Chem. 66, 305–313. CSD CrossRef CAS Google Scholar
Leite, F. H. A., Santiago, P. B. G. da S., Froes, T. Q., da Silva Filho, J., da Silva, S. G., Ximenes, R. M., de Faria, A. R., Brondani, D. J., de Albuquerque, J. F. C. & Castilho, M. S. (2016). Eur. J. Med. Chem. 123, 639–648. CrossRef CAS Google Scholar
Liu, X.-F., Zheng, C.-J., Sun, L.-P., Liu, X.-K. & Piao, H.-R. (2011). Eur. J. Med. Chem. 46, 3469–3473. Web of Science CrossRef CAS PubMed Google Scholar
Oakes, N. D., Kennedy, C. J., Jenkins, A. B., Laybutt, D. R., Chisholm, D. J. & Kraegen, E. W. (1994). Diabetes, 43, 1203–1210. CrossRef CAS Google Scholar
Sharma, R. K., Younis, Y., Mugumbate, G., Njoroge, M., Gut, J., Rosenthal, P. J. & Chibale, K. (2015). Eur. J. Med. Chem. 90, 507–518. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wei, S., Yang, J., Lee, S.-L., Kulp, S. K. & Chen, C.-S. (2009). Cancer Lett. 276, 119–124. CrossRef CAS Google Scholar
Xia, Z., Knaak, C., Ma, J., Beharry, Z. M., McInnes, C., Wang, W., Kraft, A. S. & Smith, C. D. (2009). J. Med. Chem. 52, 74–86. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.