organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Methyl-3-(3-methyl­isoxazol-5-yl)-4-oxo-4H-pyrido[1,2-a]pyrimidin-1-ium chloride

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: lahmidi_sanae@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 December 2016; accepted 11 December 2016; online 20 December 2016)

In the title mol­ecular salt, C13H12N3O2+·Cl, the oxazolyl ring is disordered over two orientations in a 0.536 (15):0.464 (15) ratio, both of which approximate to envelopes with the N atom as the flap in each case. The cation and anion are linked by a charge-assisted N—H⋯Cl hydrogen bond. In the extended structure, C—H⋯N, C—H⋯O and C—H⋯Cl inter­actions link the components into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrido­pyrimidine compounds have found use as anti­malarial agents (Mane et al., 2014[Mane, U. R., Mohanakrishnan, D., Sahal, D., Murumkar, P. R., Giridhar, R. & Yadav, M. R. (2014). Eur. J. Med. Chem. 79, 422-435.]), anti-allergic agents (Awouters et al., 1986[Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95-102.]) and urease inhibitors (Rauf et al., 2012[Rauf, A., Liaqat, S., Qureshi, A. M., Yaqub, M., Rehman, A. U., Hassan, M. U., Chohan, Z. H., Nasim, F. U. H. & Ben Hadda, T. (2012). Med. Chem. Res. 21, 60-74.]). The isoxazole nucleus is known to exhibit anti­cancer (Han et al., 2002[Han, X., Li, C., Rider, K. C., Blumenfeld, A., Twamley, B. & Natale, N. R. (2002). Tetrahedron Lett. 43, 7673-7677.]), anti-HIV (Deng et al., 2006[Deng, B. L., Cullen, M. D., Zhou, Z., Hartman, T. L., Buckheit, R. W. Jr, Pannecouque, C., De Clercq, E., Fanwick, P. E. & Cushman, M. (2006). Bioorg. Med. Chem. 14, 2366-2374.]) and fungicide (Raffa et al., 1999[Raffa, D., Daidone, G., Maggio, B., Schillaci, D., Plescia, F. & Torta, L. (1999). Farmaco, 54, 90-94.]) activities. The present work reporting the synthesis and structure of the title mol­ecular salt (Fig. 1[link]) is a continuation of our work on pyrido­pyrimidine derivatives (Djerrari et al., 2002[Djerrari, B., Essassi, E. M., Fifani, J. & Garrigues, B. (2002). C. R. Chim. 5, 177-183.]).

[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 25% probability ellipsoids. The N—H⋯Cl hydrogen bond is shown as a dotted line. Only the major component of the disorder in the oxazolyl substituent is shown.

The bicyclic core of the cation is slightly folded along the C5—N1 axis by 1.07 (14)°. In the oxazolyl substituent, the oxygen and nitro­gen atoms and the C—CH3 grouping are disordered over two sets of sites, which represent the two possible envelope conformations of the five-membered ring (flap atom = N). The cation and anion are strongly associated through the N2—H2A⋯Cl1 hydrogen bond (Table 1[link] and Fig. 1[link]). In the extended structure, the ion pairs are arranged in rows running along the a-axis direction with weak, bifurcated C13A—H13A⋯O2Ai and C13A—H13A⋯N3Ai [symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z] hydrogen bonds (Table 1[link] and Fig. 2[link]) as well as weak C—H⋯Cl inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1A⋯Cl1 0.88 (4) 2.15 (4) 3.024 (3) 177 (3)
C2—H2⋯Cl1i 0.98 (4) 2.78 (4) 3.745 (4) 173 (2)
C3—H3⋯Cl1ii 0.98 (4) 2.71 (4) 3.445 (3) 132 (3)
C11—H11⋯N3Aiii 0.90 (4) 2.67 (4) 3.390 (16) 138 (3)
C13A—H13A⋯O2Aiii 0.96 2.34 3.21 (4) 151
C13A—H13A⋯N3Aiii 0.96 2.50 3.37 (4) 150
Symmetry codes: (i) x, y+1, z; (ii) -x+3, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the a axis. N—H⋯Cl and C–H⋯O hydrogen bonds are shown, respectively, as blue and black dotted lines.

Synthesis and crystallization

A mixture of 1-(2-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl)butane-1,3-dione (0.7 g, 2.86 mmol) and of hydroxyl­amine hydro­chloride (0.4 g, 5.75 mmol) in methanol (30 ml) was heated at reflux for 4 h. The completion of the reaction was confirmed by TLC. The solid obtained upon cooling the mixture was recrystallized from ethanol solution to afford orange blocks (yield: 76%. m.p.: 465–467 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the pendant oxazolyl substituent, all atoms except C10 and C11 are disordered over two sets of sites in a 0.536 (15):0.464 (15) ratio. The two components of the disorder were refined with restraints that their geometries be comparable.

Table 2
Experimental details

Crystal data
Chemical formula C13H12N3O2+·Cl
Mr 277.70
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 6.2796 (12), 9.6912 (18), 21.152 (4)
β (°) 95.294 (3)
V3) 1281.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.32 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.75, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 28190, 6596, 4582
Rint 0.068
(sin θ/λ)max−1) 0.678
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.192, 1.04
No. of reflections 6596
No. of parameters 222
No. of restraints 53
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.33
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT, Madison, Wisconsin, USA.]), CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.]) and SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: CELL_NOW (Sheldrick, 2008a) and SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

2-Methyl-3-(3-methylisoxazol-5-yl)-4-oxo-4H-pyrido[1,2-a]pyrimidin-1-ium chloride top
Crystal data top
C13H12N3O2+·ClF(000) = 576
Mr = 277.70Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.2796 (12) ÅCell parameters from 5128 reflections
b = 9.6912 (18) Åθ = 2.3–25.9°
c = 21.152 (4) ŵ = 0.30 mm1
β = 95.294 (3)°T = 298 K
V = 1281.8 (4) Å3Block, orange
Z = 40.32 × 0.20 × 0.19 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6596 independent reflections
Radiation source: fine-focus sealed tube4582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 8.3333 pixels mm-1θmax = 28.8°, θmin = 1.9°
φ and ω scansh = 88
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1313
Tmin = 0.75, Tmax = 0.94l = 2828
28190 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: mixed
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.5444P]
where P = (Fo2 + 2Fc2)/3
6596 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.36 e Å3
53 restraintsΔρmin = 0.33 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. Analysis of 1600 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi- component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl oxazole moiety is disordered over two partially resolved sites with the disorder mainly involving alternate conformations of the heteroatom prtion of the ring.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6819 (4)0.8510 (2)0.65445 (14)0.0747 (8)
N10.9648 (4)0.7726 (2)0.60427 (12)0.0472 (6)
H1A1.092 (5)0.470 (4)0.5794 (15)0.048 (8)*
N21.0175 (4)0.5368 (3)0.59451 (11)0.0460 (6)
O2A0.497 (2)0.4524 (5)0.7017 (5)0.067 (2)0.536 (15)
N3A0.374 (2)0.4582 (16)0.7600 (5)0.068 (3)0.536 (15)
O2B0.549 (2)0.4604 (7)0.7216 (6)0.067 (2)0.464 (15)
N3B0.320 (2)0.4573 (19)0.7389 (7)0.068 (3)0.464 (15)
C11.0220 (6)0.9076 (3)0.59290 (16)0.0571 (8)
H10.933 (6)0.971 (4)0.6091 (17)0.063 (10)*
C21.1882 (6)0.9357 (4)0.55943 (17)0.0614 (8)
H21.227 (5)1.032 (4)0.5534 (15)0.058 (9)*
C31.3048 (5)0.8268 (4)0.53573 (16)0.0578 (8)
H31.424 (6)0.848 (4)0.5106 (16)0.060 (9)*
C41.2516 (5)0.6939 (3)0.54654 (14)0.0505 (7)
H41.327 (5)0.616 (3)0.5311 (14)0.046 (8)*
C51.0770 (5)0.6671 (3)0.58186 (13)0.0448 (6)
C70.7321 (5)0.6085 (3)0.65240 (13)0.0450 (6)
C60.8520 (5)0.5045 (3)0.62902 (13)0.0445 (6)
C90.8178 (6)0.3526 (3)0.6367 (2)0.0566 (8)
H9A0.841 (7)0.328 (4)0.678 (2)0.090 (14)*
H9B0.685 (7)0.327 (4)0.6228 (19)0.075 (12)*
H9C0.921 (7)0.298 (5)0.614 (2)0.089 (13)*
C80.7780 (5)0.7504 (3)0.63969 (15)0.0510 (7)
C100.5567 (5)0.5859 (3)0.69230 (13)0.0476 (7)
C110.4164 (5)0.6703 (3)0.71767 (15)0.0510 (7)
H110.400 (6)0.762 (4)0.7120 (16)0.065 (11)*
C12A0.279 (3)0.5827 (14)0.7485 (9)0.046 (3)0.536 (15)
C13A0.117 (4)0.630 (4)0.7921 (13)0.059 (2)0.536 (15)
H13A0.06280.71900.77870.089*0.536 (15)
H13B0.00140.56500.79080.089*0.536 (15)
H13C0.18390.63640.83470.089*0.536 (15)
C12B0.306 (4)0.5894 (16)0.7596 (11)0.046 (3)0.464 (15)
C13B0.110 (5)0.617 (5)0.7933 (15)0.059 (2)0.464 (15)
H13D0.10910.71140.80670.089*0.464 (15)
H13E0.01570.59890.76490.089*0.464 (15)
H13F0.10970.55760.82970.089*0.464 (15)
Cl11.28278 (13)0.31411 (8)0.53955 (4)0.0574 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0733 (16)0.0429 (12)0.115 (2)0.0045 (11)0.0483 (15)0.0048 (13)
N10.0485 (13)0.0420 (12)0.0527 (13)0.0001 (10)0.0139 (11)0.0023 (10)
N20.0463 (13)0.0418 (12)0.0514 (13)0.0045 (10)0.0130 (11)0.0006 (10)
O2A0.088 (5)0.0476 (14)0.073 (5)0.0073 (16)0.045 (4)0.008 (2)
N3A0.090 (6)0.0550 (18)0.065 (6)0.004 (4)0.042 (5)0.002 (5)
O2B0.088 (5)0.0476 (14)0.073 (5)0.0073 (16)0.045 (4)0.008 (2)
N3B0.090 (6)0.0550 (18)0.065 (6)0.004 (4)0.042 (5)0.002 (5)
C10.063 (2)0.0418 (16)0.069 (2)0.0008 (14)0.0182 (16)0.0025 (14)
C20.067 (2)0.0487 (18)0.071 (2)0.0085 (15)0.0187 (17)0.0023 (15)
C30.0541 (18)0.0594 (19)0.0626 (19)0.0049 (15)0.0190 (15)0.0000 (15)
C40.0468 (16)0.0529 (17)0.0538 (16)0.0014 (13)0.0149 (13)0.0018 (13)
C50.0451 (14)0.0425 (14)0.0475 (15)0.0017 (11)0.0076 (12)0.0004 (11)
C70.0470 (15)0.0427 (14)0.0465 (14)0.0010 (12)0.0111 (12)0.0025 (11)
C60.0449 (14)0.0424 (14)0.0466 (14)0.0020 (11)0.0065 (12)0.0016 (11)
C90.058 (2)0.0432 (16)0.071 (2)0.0025 (15)0.0213 (18)0.0033 (15)
C80.0477 (16)0.0471 (16)0.0603 (17)0.0009 (13)0.0168 (14)0.0031 (13)
C100.0522 (16)0.0436 (15)0.0480 (15)0.0021 (12)0.0106 (12)0.0031 (12)
C110.0510 (17)0.0476 (17)0.0565 (17)0.0006 (13)0.0172 (13)0.0001 (13)
C12A0.049 (4)0.0526 (19)0.037 (6)0.008 (2)0.006 (5)0.010 (3)
C13A0.064 (2)0.055 (6)0.063 (2)0.007 (3)0.0261 (17)0.004 (2)
C12B0.049 (4)0.0526 (19)0.037 (6)0.008 (2)0.006 (5)0.010 (3)
C13B0.064 (2)0.055 (6)0.063 (2)0.007 (3)0.0261 (17)0.004 (2)
Cl10.0549 (4)0.0508 (4)0.0684 (5)0.0076 (3)0.0152 (4)0.0032 (3)
Geometric parameters (Å, º) top
O1—C81.203 (4)C4—H40.96 (3)
N1—C51.352 (4)C7—C61.377 (4)
N1—C11.383 (4)C7—C81.436 (4)
N1—C81.465 (4)C7—C101.465 (4)
N2—C51.351 (4)C6—C91.498 (4)
N2—C61.360 (4)C9—H9C0.99 (4)
N2—H1A0.88 (4)C9—H9B0.89 (4)
O2A—C101.368 (5)C9—H9A0.90 (5)
O2A—N3A1.513 (6)C10—C111.349 (4)
N3A—C12A1.359 (10)C11—C12B1.412 (5)
O2B—C101.368 (5)C11—C12A1.412 (5)
O2B—N3B1.515 (7)C11—H110.90 (4)
N3B—C12B1.358 (10)C12A—C13A1.506 (7)
C1—C21.342 (5)C13A—H13A0.9600
C1—H10.92 (4)C13A—H13B0.9600
C2—C31.403 (5)C13A—H13C0.9600
C2—H20.97 (4)C12B—C13B1.506 (7)
C3—C41.355 (5)C13B—H13D0.9600
C3—H30.98 (4)C13B—H13E0.9600
C4—C51.407 (4)C13B—H13F0.9600
C5—N1—C1120.1 (3)C6—C9—H9A112 (3)
C5—N1—C8122.4 (2)H9C—C9—H9A105 (4)
C1—N1—C8117.5 (2)H9B—C9—H9A109 (3)
C5—N2—C6124.1 (3)O1—C8—C7127.9 (3)
C5—N2—H1A117 (2)O1—C8—N1117.3 (3)
C6—N2—H1A119 (2)C7—C8—N1114.9 (2)
C10—O2A—N3A104.6 (9)C11—C10—O2A108.5 (6)
C12A—N3A—O2A97.7 (12)C11—C10—O2B107.8 (6)
C10—O2B—N3B101.7 (10)C11—C10—C7133.8 (3)
C12B—N3B—O2B98.5 (15)O2A—C10—C7117.2 (5)
C2—C1—N1120.8 (3)O2B—C10—C7117.1 (6)
C2—C1—H1126 (2)C10—C11—C12B106.8 (9)
N1—C1—H1113 (2)C10—C11—C12A105.6 (7)
C1—C2—C3119.5 (3)C10—C11—H11128 (2)
C1—C2—H2119 (2)C12B—C11—H11125 (2)
C3—C2—H2122 (2)C12A—C11—H11126 (2)
C4—C3—C2120.7 (3)N3A—C12A—C11109.9 (13)
C4—C3—H3120 (2)N3A—C12A—C13A118.1 (16)
C2—C3—H3119 (2)C11—C12A—C13A125.1 (19)
C3—C4—C5118.8 (3)C12A—C13A—H13A109.5
C3—C4—H4123.6 (19)C12A—C13A—H13B109.5
C5—C4—H4117.6 (19)H13A—C13A—H13B109.5
N2—C5—N1118.3 (3)C12A—C13A—H13C109.5
N2—C5—C4121.4 (3)H13A—C13A—H13C109.5
N1—C5—C4120.2 (3)H13B—C13A—H13C109.5
C6—C7—C8120.5 (3)N3B—C12B—C11105.8 (13)
C6—C7—C10124.3 (3)N3B—C12B—C13B113 (2)
C8—C7—C10115.2 (2)C11—C12B—C13B132 (2)
N2—C6—C7119.6 (3)C12B—C13B—H13D109.5
N2—C6—C9114.1 (3)C12B—C13B—H13E109.5
C7—C6—C9126.3 (3)H13D—C13B—H13E109.5
C6—C9—H9C111 (3)C12B—C13B—H13F109.5
C6—C9—H9B112 (3)H13D—C13B—H13F109.5
H9C—C9—H9B108 (4)H13E—C13B—H13F109.5
C10—O2A—N3A—C12A35.8 (19)C1—N1—C8—O12.8 (5)
C10—O2B—N3B—C12B42.4 (18)C5—N1—C8—C74.0 (4)
C5—N1—C1—C20.3 (5)C1—N1—C8—C7177.4 (3)
C8—N1—C1—C2178.4 (3)N3A—O2A—C10—C1125.9 (13)
N1—C1—C2—C30.0 (6)N3A—O2A—C10—C7161.2 (9)
C1—C2—C3—C40.2 (6)N3B—O2B—C10—C1129.1 (12)
C2—C3—C4—C50.1 (5)N3B—O2B—C10—C7162.2 (8)
C6—N2—C5—N10.6 (4)C6—C7—C10—C11177.0 (3)
C6—N2—C5—C4179.2 (3)C8—C7—C10—C114.6 (5)
C1—N1—C5—N2179.3 (3)C6—C7—C10—O2A6.3 (8)
C8—N1—C5—N22.1 (4)C8—C7—C10—O2A175.2 (7)
C1—N1—C5—C40.4 (4)C6—C7—C10—O2B18.1 (8)
C8—N1—C5—C4178.2 (3)C8—C7—C10—O2B160.4 (7)
C3—C4—C5—N2179.5 (3)O2B—C10—C11—C12B5.3 (14)
C3—C4—C5—N10.2 (5)C7—C10—C11—C12B171.3 (13)
C5—N2—C6—C71.1 (4)O2A—C10—C11—C12A5.4 (12)
C5—N2—C6—C9179.8 (3)C7—C10—C11—C12A176.6 (11)
C8—C7—C6—N21.1 (4)O2A—N3A—C12A—C1133 (2)
C10—C7—C6—N2177.3 (3)O2A—N3A—C12A—C13A174 (2)
C8—C7—C6—C9177.9 (3)C10—C11—C12A—N3A20.2 (19)
C10—C7—C6—C93.8 (5)C10—C11—C12A—C13A170 (2)
C6—C7—C8—O1176.4 (4)O2B—N3B—C12B—C1140 (2)
C10—C7—C8—O15.1 (5)O2B—N3B—C12B—C13B169 (2)
C6—C7—C8—N13.4 (4)C10—C11—C12B—N3B24 (2)
C10—C7—C8—N1175.1 (3)C10—C11—C12B—C13B168 (3)
C5—N1—C8—O1175.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1A···Cl10.88 (4)2.15 (4)3.024 (3)177 (3)
C2—H2···Cl1i0.98 (4)2.78 (4)3.745 (4)173 (2)
C3—H3···Cl1ii0.98 (4)2.71 (4)3.445 (3)132 (3)
C11—H11···N3Aiii0.90 (4)2.67 (4)3.390 (16)138 (3)
C13A—H13A···O2Aiii0.962.343.21 (4)151
C13A—H13A···N3Aiii0.962.503.37 (4)150
Symmetry codes: (i) x, y+1, z; (ii) x+3, y+1, z+1; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAwouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT, Madison, Wisconsin, USA.  Google Scholar
First citationDeng, B. L., Cullen, M. D., Zhou, Z., Hartman, T. L., Buckheit, R. W. Jr, Pannecouque, C., De Clercq, E., Fanwick, P. E. & Cushman, M. (2006). Bioorg. Med. Chem. 14, 2366–2374.  CSD CrossRef CAS Google Scholar
First citationDjerrari, B., Essassi, E. M., Fifani, J. & Garrigues, B. (2002). C. R. Chim. 5, 177–183.  CrossRef CAS Google Scholar
First citationHan, X., Li, C., Rider, K. C., Blumenfeld, A., Twamley, B. & Natale, N. R. (2002). Tetrahedron Lett. 43, 7673–7677.  Web of Science CSD CrossRef CAS Google Scholar
First citationMane, U. R., Mohanakrishnan, D., Sahal, D., Murumkar, P. R., Giridhar, R. & Yadav, M. R. (2014). Eur. J. Med. Chem. 79, 422–435.  CrossRef CAS Google Scholar
First citationRaffa, D., Daidone, G., Maggio, B., Schillaci, D., Plescia, F. & Torta, L. (1999). Farmaco, 54, 90–94.  CrossRef CAS Google Scholar
First citationRauf, A., Liaqat, S., Qureshi, A. M., Yaqub, M., Rehman, A. U., Hassan, M. U., Chohan, Z. H., Nasim, F. U. H. & Ben Hadda, T. (2012). Med. Chem. Res. 21, 60–74.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds