organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Meth­­oxy-2-p-tolyl-4H-chromen-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 December 2016; accepted 20 December 2016; online 22 December 2016)

In the title compound, C17H14O3, the methyl-substituted benzene ring is twisted relative to the 4H-chromenon skeleton by 51.5 (2)°. The C atom of the meth­oxy group of the 4H-chromenon unit is displaced from the ring plane by 1.225 (2) Å. In the crystal, C—H—O inter­actions connect the mol­ecules into (001) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Flavonol, as shown in its name, is a class of flavonoid which has a 3-hy­droxy functional group in the flavone skeleton. Various flavonols have been isolated from natural sources and synthesized(Bendaikha et al., 2014[Bendaikha, S., Gadaut, M., Harakat, D. & Magid, A. (2014). Phytochemistry, 103, 129-136.]; Prescott et al., 2013[Prescott, T. A. K., Kite, G. C., Porter, E. A. & Veitch, N. C. (2013). Phytochemistry, 88, 85-91.]) due to their wide spectrum of biological activities (Lee et al., 2014[Lee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 129-132.]; Dias et al., 2013[Dias, T. A., Duarte, C. L., Lima, C. F., Proenca, F. & Pereira-Wilson, C. (2013). Eur. J. Med. Chem. 65, 500-510.]). Because it has been well established that the presence and position of hy­droxy and meth­oxy substituents plays an important role in determining the biological activity of flavonoids (Burmistrova et al., 2014[Burmistrova, O., Marrero, M., Estevez, S., Welsch, I., Brouard, I., Quintana, J. & Estevez, F. (2014). Eur. J. Med. Chem. 84, 30-41.]), the 3-hy­droxy functional group in the title flavonol was methyl­ated and its crystal structure was determined.

An inter­mediate, chalcone I, was prepared by the previously reported methods and flavonol II was obtained by oxidative cyclization of the chalcone I with H2O2 in alkaline methanol medium (Lee et al., 2014[Lee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 129-132.]). Methyl­ation of flavonol II with DMS (dimethyl sulfide) gave the desired methyl­ated flavonol.

In the title compound (Fig. 1[link]), the methyl-substituted benzene ring is twisted relative to the 4H-chromenone ring by 51.5 (2)°. The meth­oxy group of the 4H-chromenone unit is almost orthogonal to the ring [displacement = 1.225 (2) Å; C9—O3—C17 = 113.67 (14)°]. In the crystal, C—H—O inter­actions (Table 1[link]) connect the mol­ecules into (001) sheets (Figs. 2[link] and 3[link]). Example structures of methyl­ated flavonols have been published previously (e.g. Serdiuk et al., 2013[Serdiuk, I. E., Wera, M., Roshal, A. D. & Błazejowski, J. (2013). Acta Cryst. E69, o895.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.94 2.48 3.249 (2) 138
C6—H6⋯O1ii 0.94 2.55 3.214 (2) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, with C4—H4⋯O1 inter­actions shown as dashed lines; these generate [100] chains.
[Figure 3]
Figure 3
A partial view of the crystal structure of the title compound, with C6—H6⋯O1 inter­actions shown as brown dashed lines; these generate [010] chains.

Synthesis and crystallization

2-Hy­droxy­aceto­phenone (10 mmol, 1.36 g) and 4-methyl­benzaldehyde (10 mmol, 1.2 g) were dissolved in 20 ml of ethanol and the temperature was adjusted to around 275–277 K in an ice bath. To the cooled reaction mixture was added 2 ml of 50% (w/v) of aqueous KOH solution and the resulting solution was stirred at room temperature for 24 h. At the end of the reaction, ice water was added to the mixture and it was then acidified with 3 N HCl (pH = 3–4). The precipitate was vacuum filtered and washed with methanol to give chalcone I. The chalcone compound I (1 mmol, 238 mg) was dissolved in 5 ml of methanol and 5 ml of THF and cooled in a water–ice bath (275–277 K). To the cold solution was added 16% sodium hydroxide (0.5 ml) and an excess of 35% H2O2 (2 ml). The reaction mixture was stirred for 3 h and was then acidified with 3 N HCl (pH = 4–5). The precipitatate was vacuum filtered and washed with H2O–methanol solution to furnish flavonol II. The flavonol compound II (0.3 mmol, 75 mg) was methyl­ated with dimethyl sulfate (DMS) (10 mmol, 1 ml) in 4 ml of 16% NaOH solution. The reaction mixture was heated at 333 K for 4–6 h. The resulting mixture was extracted with EtOAc (20 ml × 2) and washed with saturated NaHCO3 solution (20 ml × 2). The combined organic layer was dried over MgSO4 and filtered. The filtrate was evaporated to yield the title compound as a crude solid which was recrystallized from methanol solution (m.p. 364–365 K). The synthetic scheme is shown in Fig. 4[link].

[Figure 4]
Figure 4
Synthetic scheme for the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H14O3
Mr 266.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 223
a, b, c (Å) 6.2439 (2), 7.9982 (3), 27.0113 (10)
V3) 1348.94 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.22 × 0.14 × 0.07
 
Data collection
Diffractometer PHOTON 100 CMOS
No. of measured, independent and observed [I > 2σ(I)] reflections 21647, 3356, 2520
Rint 0.049
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.05
No. of reflections 3356
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.16
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Methoxy-2-p-tolyl-4H-chromen-4-one top
Crystal data top
C17H14O3F(000) = 560
Mr = 266.28Dx = 1.311 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9141 reflections
a = 6.2439 (2) Åθ = 2.7–27.0°
b = 7.9982 (3) ŵ = 0.09 mm1
c = 27.0113 (10) ÅT = 223 K
V = 1348.94 (8) Å3Block, colourless
Z = 40.22 × 0.14 × 0.07 mm
Data collection top
PHOTON 100 CMOS
diffractometer
2520 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 28.3°, θmin = 2.7°
φ and ω scansh = 88
21647 measured reflectionsk = 1010
3356 independent reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.2725P]
where P = (Fo2 + 2Fc2)/3
3356 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8605 (3)0.2938 (2)0.91222 (6)0.0330 (4)
O10.9374 (2)0.42547 (15)0.92802 (5)0.0426 (3)
C20.9379 (3)0.1291 (2)0.92751 (6)0.0326 (4)
C31.1101 (3)0.1115 (2)0.96055 (7)0.0416 (5)
H31.17570.20700.97400.050*
C41.1831 (4)0.0452 (3)0.97322 (7)0.0477 (5)
H41.30040.05640.99480.057*
C51.0840 (3)0.1870 (2)0.95420 (7)0.0423 (5)
H51.13350.29340.96350.051*
C60.9149 (3)0.1736 (2)0.92205 (6)0.0370 (4)
H60.84780.26950.90930.044*
C70.8453 (3)0.0147 (2)0.90884 (6)0.0326 (4)
O20.68193 (19)0.00843 (14)0.87466 (4)0.0343 (3)
C80.6107 (3)0.1430 (2)0.85826 (6)0.0315 (4)
C90.6885 (3)0.2892 (2)0.87624 (6)0.0319 (4)
C100.4456 (3)0.1239 (2)0.81962 (6)0.0319 (4)
C110.2745 (3)0.0167 (2)0.82682 (7)0.0385 (4)
H110.26290.04330.85660.046*
C120.1211 (3)0.0028 (2)0.79056 (7)0.0390 (4)
H120.00220.07170.79680.047*
C130.1381 (3)0.0767 (2)0.74513 (7)0.0360 (4)
C140.3115 (3)0.1827 (2)0.73797 (7)0.0376 (4)
H140.32680.23800.70750.045*
C150.4623 (3)0.2085 (2)0.77474 (6)0.0365 (4)
H150.57620.28330.76940.044*
C160.0256 (3)0.0460 (3)0.70531 (7)0.0458 (5)
H16A0.16410.08690.71620.069*
H16B0.03490.07290.69870.069*
H16C0.01650.10430.67540.069*
O30.6097 (2)0.43757 (14)0.85849 (5)0.0406 (3)
C170.4490 (3)0.5098 (3)0.88908 (8)0.0525 (5)
H17A0.50340.52140.92250.079*
H17B0.32360.43820.88930.079*
H17C0.41050.61900.87630.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (9)0.0283 (8)0.0339 (9)0.0017 (8)0.0067 (8)0.0018 (7)
O10.0476 (8)0.0290 (6)0.0512 (8)0.0034 (6)0.0014 (7)0.0076 (5)
C20.0385 (10)0.0298 (8)0.0295 (8)0.0004 (8)0.0043 (7)0.0012 (7)
C30.0495 (12)0.0367 (10)0.0385 (10)0.0031 (9)0.0041 (9)0.0046 (8)
C40.0543 (12)0.0468 (11)0.0419 (11)0.0046 (11)0.0117 (10)0.0040 (9)
C50.0525 (12)0.0333 (9)0.0411 (10)0.0063 (9)0.0000 (9)0.0068 (8)
C60.0436 (11)0.0279 (9)0.0395 (10)0.0006 (8)0.0036 (9)0.0037 (7)
C70.0354 (9)0.0324 (9)0.0299 (8)0.0007 (8)0.0029 (7)0.0006 (7)
O20.0370 (7)0.0257 (6)0.0401 (7)0.0008 (6)0.0042 (5)0.0002 (5)
C80.0308 (9)0.0296 (8)0.0342 (9)0.0011 (7)0.0049 (8)0.0033 (7)
C90.0350 (9)0.0258 (8)0.0348 (9)0.0013 (8)0.0043 (7)0.0019 (7)
C100.0320 (9)0.0288 (8)0.0349 (9)0.0014 (8)0.0034 (7)0.0023 (7)
C110.0400 (10)0.0395 (10)0.0362 (9)0.0046 (9)0.0047 (8)0.0027 (8)
C120.0317 (9)0.0402 (10)0.0452 (10)0.0061 (9)0.0032 (8)0.0006 (8)
C130.0331 (9)0.0362 (9)0.0387 (10)0.0063 (8)0.0009 (8)0.0047 (8)
C140.0392 (10)0.0377 (10)0.0357 (9)0.0014 (9)0.0041 (8)0.0038 (7)
C150.0337 (9)0.0343 (9)0.0415 (10)0.0042 (9)0.0053 (8)0.0018 (8)
C160.0400 (11)0.0518 (12)0.0456 (11)0.0002 (10)0.0041 (9)0.0046 (9)
O30.0454 (7)0.0281 (6)0.0483 (7)0.0057 (6)0.0056 (7)0.0046 (5)
C170.0445 (11)0.0524 (12)0.0606 (13)0.0154 (11)0.0038 (10)0.0006 (10)
Geometric parameters (Å, º) top
C1—O11.233 (2)C10—C111.383 (3)
C1—C91.449 (3)C10—C151.392 (2)
C1—C21.463 (2)C11—C121.379 (3)
C2—C71.382 (2)C11—H110.9400
C2—C31.404 (3)C12—C131.386 (3)
C3—C41.377 (3)C12—H120.9400
C3—H30.9400C13—C141.388 (3)
C4—C51.391 (3)C13—C161.504 (3)
C4—H40.9400C14—C151.384 (3)
C5—C61.371 (3)C14—H140.9400
C5—H50.9400C15—H150.9400
C6—C71.390 (2)C16—H16A0.9700
C6—H60.9400C16—H16B0.9700
C7—O21.377 (2)C16—H16C0.9700
O2—C81.364 (2)O3—C171.422 (2)
C8—C91.357 (2)C17—H17A0.9700
C8—C101.475 (2)C17—H17B0.9700
C9—O31.371 (2)C17—H17C0.9700
O1—C1—C9122.85 (16)C15—C10—C8120.88 (16)
O1—C1—C2122.85 (17)C12—C11—C10120.43 (17)
C9—C1—C2114.29 (15)C12—C11—H11119.8
C7—C2—C3117.98 (17)C10—C11—H11119.8
C7—C2—C1120.52 (16)C11—C12—C13121.59 (18)
C3—C2—C1121.49 (17)C11—C12—H12119.2
C4—C3—C2120.16 (18)C13—C12—H12119.2
C4—C3—H3119.9C12—C13—C14117.58 (17)
C2—C3—H3119.9C12—C13—C16120.41 (17)
C3—C4—C5120.21 (19)C14—C13—C16122.00 (17)
C3—C4—H4119.9C15—C14—C13121.45 (17)
C5—C4—H4119.9C15—C14—H14119.3
C6—C5—C4120.87 (18)C13—C14—H14119.3
C6—C5—H5119.6C14—C15—C10120.05 (18)
C4—C5—H5119.6C14—C15—H15120.0
C5—C6—C7118.34 (17)C10—C15—H15120.0
C5—C6—H6120.8C13—C16—H16A109.5
C7—C6—H6120.8C13—C16—H16B109.5
O2—C7—C2121.64 (16)H16A—C16—H16B109.5
O2—C7—C6115.91 (15)C13—C16—H16C109.5
C2—C7—C6122.43 (16)H16A—C16—H16C109.5
C8—O2—C7119.44 (13)H16B—C16—H16C109.5
C9—C8—O2122.18 (15)C9—O3—C17113.67 (14)
C9—C8—C10126.34 (16)O3—C17—H17A109.5
O2—C8—C10111.47 (14)O3—C17—H17B109.5
C8—C9—O3119.52 (16)H17A—C17—H17B109.5
C8—C9—C1121.84 (15)O3—C17—H17C109.5
O3—C9—C1118.58 (15)H17A—C17—H17C109.5
C11—C10—C15118.81 (17)H17B—C17—H17C109.5
C11—C10—C8120.28 (16)
O1—C1—C2—C7179.68 (17)C10—C8—C9—C1176.22 (16)
C9—C1—C2—C71.4 (2)O1—C1—C9—C8177.99 (18)
O1—C1—C2—C31.6 (3)C2—C1—C9—C80.9 (2)
C9—C1—C2—C3177.25 (16)O1—C1—C9—O30.9 (3)
C7—C2—C3—C40.5 (3)C2—C1—C9—O3178.00 (15)
C1—C2—C3—C4178.26 (19)C9—C8—C10—C11131.6 (2)
C2—C3—C4—C51.4 (3)O2—C8—C10—C1148.8 (2)
C3—C4—C5—C61.1 (3)C9—C8—C10—C1550.6 (3)
C4—C5—C6—C70.1 (3)O2—C8—C10—C15128.94 (17)
C3—C2—C7—O2177.20 (15)C15—C10—C11—C121.5 (3)
C1—C2—C7—O21.5 (2)C8—C10—C11—C12179.29 (17)
C3—C2—C7—C60.7 (3)C10—C11—C12—C133.3 (3)
C1—C2—C7—C6179.49 (17)C11—C12—C13—C142.5 (3)
C5—C6—C7—O2177.00 (15)C11—C12—C13—C16176.76 (18)
C5—C6—C7—C21.1 (3)C12—C13—C14—C150.1 (3)
C2—C7—O2—C80.8 (2)C16—C13—C14—C15179.32 (17)
C6—C7—O2—C8177.31 (16)C13—C14—C15—C101.8 (3)
C7—O2—C8—C93.2 (2)C11—C10—C15—C141.0 (3)
C7—O2—C8—C10176.35 (13)C8—C10—C15—C14176.76 (16)
O2—C8—C9—O3179.63 (15)C8—C9—O3—C1797.8 (2)
C10—C8—C9—O30.9 (3)C1—C9—O3—C1785.1 (2)
O2—C8—C9—C13.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.942.483.249 (2)138
C6—H6···O1ii0.942.553.214 (2)128
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y1, z.
 

Acknowledgements

This work was supported bya Dongduk Women's University Grant.

References

First citationBendaikha, S., Gadaut, M., Harakat, D. & Magid, A. (2014). Phytochemistry, 103, 129–136.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurmistrova, O., Marrero, M., Estevez, S., Welsch, I., Brouard, I., Quintana, J. & Estevez, F. (2014). Eur. J. Med. Chem. 84, 30–41.  CrossRef CAS Google Scholar
First citationDias, T. A., Duarte, C. L., Lima, C. F., Proenca, F. & Pereira-Wilson, C. (2013). Eur. J. Med. Chem. 65, 500–510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 129–132.  Web of Science CrossRef CAS Google Scholar
First citationPrescott, T. A. K., Kite, G. C., Porter, E. A. & Veitch, N. C. (2013). Phytochemistry, 88, 85–91.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSerdiuk, I. E., Wera, M., Roshal, A. D. & Błazejowski, J. (2013). Acta Cryst. E69, o895.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds