organic compounds
2,3,5,6-Tetrakis{[(pyridin-2-yl)sulfanyl]methyl}pyrazine
aCanAm Bioresearch Inc., 9-1250 Waverley Street, Winnipeg, Manitoba R3T 6C6, Canada, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The title compound, C28H24N6S4, synthesized by the reaction of 2,3,5,6-tetrakis(bromomethyl)pyrazine with 2-mercaptopyridine, crystallizes with one half-molecule in the The whole molecule is generated by inversion symmetry, the centre of the pyrazine ring being located about an inversion centre. The pyridine rings of the unique (pyridin-2-ylsulfanyl)methyl substituents are inclined to the pyrazine ring by 38.7 (3) and 75.6 (2)°, and by 66.0 (3)° to one another. In the crystal, molecules are linked via C—H⋯π interactions, forming chains along the b-axis direction. The chains are linked by offset π–π interactions [intercentroid distance = 3.682 (3) Å], forming layers lying parallel to the bc plane.
Keywords: crystal structure; tetrakis-substituted; pyrazine; pyridin-2-ylsulfanyl derivative; inversion symmetry; C—H⋯π interactions; offset π–π interactions.
CCDC reference: 1521950
Structure description
The title compound is one of a series of tetra-substituted pyrazine compounds (Pacifico & Stoeckli-Evans, 2004; Assoumatine et al., 2007; Assoumatine & Stoeckli-Evans, 2014a), prepared in order to study their coordination behaviour with various transition metals (Assoumatine, 1999). It was synthesized by the reaction of 2,3,5,6-tetrakis(bromomethyl)pyrazine (Assoumatine & Stoeckli-Evans, 2014b), with 2-mercaptopyridine. The synthesis and of 2,3,5,6-tetrakis(bromomethyl)pyrazine have been reported (Assoumatine & Stoeckli-Evans, 2014b).
The title compound, crystallizes with one half-molecule in the ). The whole molecule is generated by inversion symmetry, the centre of the pyrazine ring being located about an inversion centre. The pyridine rings (N2/C4–C8 and N3/C10–C14) of the unique (pyridin-2-ylsulfanyl)methyl substituents are inclined to the pyrazine ring by 38.7 (3) and 75.6 (2)°, respectively, and by 66.0 (3)° to one another. In the phenyl analogue of the title compound, viz. 2,3,5,6-tetrakis[(phenylsulfanyl)methyl]pyrazine (Assoumatine et al., 2007), the corresponding dihedral angles are 19.15 (7), 79.58 (7) and 60.45 (8)°, respectively.
(Fig. 1In the crystal, molecules are linked via C—H⋯π interactions, forming chains along [010]; see Table 1 and Fig. 2. The chains are linked by offset π–π interactions, forming layers lying parallel to the bc plane, as shown in Fig. 3. The intercentroid distances are Cg1⋯Cg3i = Cg1⋯Cg3ii = 3.682 (3) Å, interplanar distances = 3.554 (2) Å, offsets = 1.142 Å; Cg1 and Cg3 are the centroids of the pyrazine ring and the pyridine ring N3/C10–C14; symmetry codes: (i) −x + 2, y + , −z + ; (ii) x, −y + , z + . There are no other significant intermolecular interactions present in the crystal.
Synthesis and crystallization
To a magnetically stirred solution of 2-mercaptopyridine (4 g, 35.4 mmol; Aldrich, 99%) in CH2Cl2 (100 ml), were added 2,3,5,6-tetrakis(bromomethyl)pyrazine (4 g, 8.85 mmol) and triethylamine (5 ml, 35.4 mmol; Fluka, 99.5%). The contents were heated at reflux for 30 min, cooled to room temperature, and diluted with CH2Cl2 (100 ml). The organic solution was washed with water (3 × 30 ml) and a of NaCl (1 × 30 ml), dried over anhydrous MgSO4 and evaporated to dryness on a rotary evaporator after filtration. The resultant yellowish residue was recrystallized from acetonitrile solution and dried under vacuum to afford the title compound (yield 4.56 g, 90%; m.p. 422–423 K). Rf 0.48 (solvent CH2Cl2, CHCl3/MeCO2Et, 7/5 v/v). Pale-yellow blocks were prepared by diffusion of an equal volume of ethanol into a concentrated CHCl3 (4 ml) solution of the title compound. Spectroscopic and analytical data: The principal peaks of the IR spectrum (KBr disc, cm−1) are: ν = 1579 vs, 1556 s, 1453 s, 1414 vs, 1124 vs, 754 vs, 723 s. 1H RMN (CDCl3, 400 MHz): δ = 8.35 [ddd, 3J(6,5) = 4.9, 4J(6,4) = 1.8, 5J(6,3) = 0.9, 4H, 6-PyH], 7.44 [ddd, 3J(4,3) = 8.1, 3J(4,5) = 7.4, 4J(4,6) = 1.9, 4H, 4-PyH), 7.24 (ddd, 3J(3,4) = 8.1, 4J(3,5) = 5J(3,6) = 1.0, 4H, 3-PyH], 6.95 [ddd, 3J(5,4) = 7.3, 3J(5,6) = 4.9, 4J(5,3) = 1.0, 4H, 5-PyH], 4.80 (s, 8H, Pz—CH2—S) p.p.m. 13C RMN (CDCl3, 100 MHz): δ = 159.01, 150.23, 149.88, 136.74, 122.65, 120.27, 33.88 p.p.m. Analysis for C28H24N6S4 (Mr = 572.82 g mol−1); calculated: C 58.71, H 4.23, N 14.68, S 22.39%; found: C 58.76, H 4.23, N 14.68, S 22.25%. MS (EI, 70 eV), m/z (%): 572 ([M+], 5.2).
Refinement
Crystal data, data collection and structure . No absorption correction was applied owing to the irregular shape of the crystal, and as there were no suitable reflections for ψ scans.
details are summarized in Table 2Structural data
CCDC reference: 1521950
https://doi.org/10.1107/S2414314616019775/hb4103sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616019775/hb4103Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616019775/hb4103Isup3.cml
Data collection: STADI4 (Stoe & Cie, 1997); cell
STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C28H24N6S4 | F(000) = 596 |
Mr = 572.77 | Dx = 1.397 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.8139 (12) Å | Cell parameters from 28 reflections |
b = 7.4803 (11) Å | θ = 14.0–19.6° |
c = 15.5204 (10) Å | µ = 0.38 mm−1 |
β = 96.766 (8)° | T = 293 K |
V = 1362.0 (3) Å3 | Block, pale yellow |
Z = 2 | 0.27 × 0.25 × 0.15 mm |
Stoe AED2 four-circle diffractometer | Rint = 0.035 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 2.6° |
Graphite monochromator | h = −14→14 |
ω/2θ scans | k = 0→9 |
3360 measured reflections | l = −18→18 |
2523 independent reflections | 3 standard reflections every 120 min |
1590 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.069 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0077P)2 + 2.2742P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
2523 reflections | Δρmax = 0.31 e Å−3 |
173 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0034 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.72006 (10) | 0.7083 (2) | 0.88691 (7) | 0.0656 (5) | |
S2 | 0.87442 (11) | 0.2016 (2) | 0.80919 (7) | 0.0579 (4) | |
N1 | 1.0653 (3) | 0.3502 (5) | 0.98745 (19) | 0.0418 (9) | |
N2 | 0.6938 (3) | 0.6825 (6) | 0.7136 (2) | 0.0646 (12) | |
N3 | 0.8849 (3) | 0.3740 (6) | 0.6582 (2) | 0.0544 (11) | |
C1 | 0.9341 (3) | 0.5756 (6) | 0.9335 (2) | 0.0372 (10) | |
C2 | 1.0000 (3) | 0.4258 (6) | 0.9210 (2) | 0.0392 (11) | |
C3 | 0.8619 (3) | 0.6669 (7) | 0.8603 (2) | 0.0473 (12) | |
H3A | 0.8578 | 0.5926 | 0.8088 | 0.057* | |
H3B | 0.8970 | 0.7794 | 0.8475 | 0.057* | |
C4 | 0.6412 (4) | 0.7190 (7) | 0.7825 (3) | 0.0531 (13) | |
C5 | 0.5276 (4) | 0.7658 (8) | 0.7779 (4) | 0.0784 (18) | |
H5 | 0.4942 | 0.7927 | 0.8277 | 0.094* | |
C6 | 0.4649 (5) | 0.7715 (10) | 0.6969 (5) | 0.098 (2) | |
H6 | 0.3883 | 0.8033 | 0.6911 | 0.118* | |
C7 | 0.5171 (6) | 0.7297 (10) | 0.6251 (4) | 0.104 (3) | |
H7 | 0.4760 | 0.7291 | 0.5702 | 0.125* | |
C8 | 0.6291 (5) | 0.6895 (9) | 0.6359 (3) | 0.088 (2) | |
H8 | 0.6642 | 0.6651 | 0.5866 | 0.105* | |
C9 | 1.0016 (4) | 0.3364 (7) | 0.8342 (2) | 0.0480 (12) | |
H9A | 1.0687 | 0.2612 | 0.8354 | 0.058* | |
H9B | 1.0052 | 0.4263 | 0.7896 | 0.058* | |
C10 | 0.8353 (4) | 0.2440 (6) | 0.6968 (2) | 0.0441 (12) | |
C11 | 0.7524 (4) | 0.1338 (7) | 0.6552 (3) | 0.0609 (14) | |
H11 | 0.7199 | 0.0431 | 0.6851 | 0.073* | |
C12 | 0.7194 (4) | 0.1621 (8) | 0.5681 (3) | 0.0686 (16) | |
H12 | 0.6639 | 0.0902 | 0.5381 | 0.082* | |
C13 | 0.7684 (4) | 0.2955 (8) | 0.5268 (3) | 0.0659 (15) | |
H13 | 0.7472 | 0.3164 | 0.4681 | 0.079* | |
C14 | 0.8497 (4) | 0.3991 (8) | 0.5729 (3) | 0.0644 (15) | |
H14 | 0.8823 | 0.4914 | 0.5442 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0532 (7) | 0.1041 (12) | 0.0390 (6) | 0.0141 (8) | 0.0032 (5) | 0.0054 (8) |
S2 | 0.0748 (9) | 0.0683 (9) | 0.0284 (5) | −0.0127 (8) | −0.0025 (5) | −0.0026 (6) |
N1 | 0.045 (2) | 0.052 (2) | 0.0272 (16) | 0.0003 (18) | −0.0010 (14) | −0.0026 (17) |
N2 | 0.063 (3) | 0.087 (3) | 0.040 (2) | 0.011 (3) | −0.0095 (19) | 0.001 (2) |
N3 | 0.056 (2) | 0.073 (3) | 0.0325 (19) | −0.005 (2) | 0.0009 (17) | 0.001 (2) |
C1 | 0.038 (2) | 0.050 (3) | 0.0222 (19) | −0.004 (2) | −0.0023 (16) | 0.0036 (19) |
C2 | 0.037 (2) | 0.054 (3) | 0.0246 (19) | −0.004 (2) | −0.0048 (17) | −0.001 (2) |
C3 | 0.047 (3) | 0.064 (3) | 0.030 (2) | 0.005 (2) | −0.0006 (18) | 0.005 (2) |
C4 | 0.048 (3) | 0.057 (3) | 0.050 (3) | 0.004 (3) | −0.009 (2) | 0.010 (3) |
C5 | 0.051 (3) | 0.100 (5) | 0.082 (4) | 0.017 (3) | −0.002 (3) | 0.013 (4) |
C6 | 0.054 (4) | 0.111 (6) | 0.121 (6) | 0.013 (4) | −0.029 (4) | 0.017 (5) |
C7 | 0.084 (5) | 0.133 (7) | 0.083 (5) | 0.011 (5) | −0.043 (4) | 0.010 (5) |
C8 | 0.090 (4) | 0.115 (6) | 0.049 (3) | 0.013 (4) | −0.026 (3) | −0.005 (4) |
C9 | 0.051 (3) | 0.066 (3) | 0.026 (2) | 0.002 (2) | 0.0009 (18) | −0.003 (2) |
C10 | 0.046 (2) | 0.057 (3) | 0.028 (2) | 0.008 (2) | −0.0018 (18) | −0.012 (2) |
C11 | 0.068 (3) | 0.067 (4) | 0.045 (3) | −0.010 (3) | −0.004 (2) | −0.004 (3) |
C12 | 0.068 (4) | 0.089 (5) | 0.044 (3) | −0.005 (3) | −0.014 (2) | −0.015 (3) |
C13 | 0.065 (3) | 0.098 (5) | 0.032 (2) | 0.006 (3) | −0.007 (2) | −0.005 (3) |
C14 | 0.070 (3) | 0.086 (4) | 0.038 (2) | 0.001 (3) | 0.006 (2) | 0.010 (3) |
S1—C4 | 1.773 (4) | C5—C6 | 1.383 (7) |
S1—C3 | 1.799 (4) | C5—H5 | 0.9300 |
S2—C10 | 1.780 (4) | C6—C7 | 1.371 (9) |
S2—C9 | 1.813 (4) | C6—H6 | 0.9300 |
N1—C2 | 1.339 (5) | C7—C8 | 1.349 (8) |
N1—C1i | 1.346 (5) | C7—H7 | 0.9300 |
N2—C4 | 1.328 (6) | C8—H8 | 0.9300 |
N2—C8 | 1.349 (5) | C9—H9A | 0.9700 |
N3—C10 | 1.315 (6) | C9—H9B | 0.9700 |
N3—C14 | 1.353 (5) | C10—C11 | 1.380 (6) |
C1—N1i | 1.346 (5) | C11—C12 | 1.379 (6) |
C1—C2 | 1.390 (6) | C11—H11 | 0.9300 |
C1—C3 | 1.502 (5) | C12—C13 | 1.353 (7) |
C2—C9 | 1.506 (5) | C12—H12 | 0.9300 |
C3—H3A | 0.9700 | C13—C14 | 1.368 (7) |
C3—H3B | 0.9700 | C13—H13 | 0.9300 |
C4—C5 | 1.380 (6) | C14—H14 | 0.9300 |
C4—S1—C3 | 101.7 (2) | C8—C7—H7 | 120.7 |
C10—S2—C9 | 102.9 (2) | C6—C7—H7 | 120.7 |
C2—N1—C1i | 117.9 (4) | N2—C8—C7 | 124.3 (6) |
C4—N2—C8 | 116.3 (4) | N2—C8—H8 | 117.8 |
C10—N3—C14 | 116.5 (4) | C7—C8—H8 | 117.8 |
N1i—C1—C2 | 121.1 (3) | C2—C9—S2 | 109.9 (3) |
N1i—C1—C3 | 116.3 (4) | C2—C9—H9A | 109.7 |
C2—C1—C3 | 122.6 (3) | S2—C9—H9A | 109.7 |
N1—C2—C1 | 120.9 (4) | C2—C9—H9B | 109.7 |
N1—C2—C9 | 115.7 (4) | S2—C9—H9B | 109.7 |
C1—C2—C9 | 123.3 (4) | H9A—C9—H9B | 108.2 |
C1—C3—S1 | 111.5 (3) | N3—C10—C11 | 124.0 (4) |
C1—C3—H3A | 109.3 | N3—C10—S2 | 120.0 (3) |
S1—C3—H3A | 109.3 | C11—C10—S2 | 116.0 (4) |
C1—C3—H3B | 109.3 | C12—C11—C10 | 118.0 (5) |
S1—C3—H3B | 109.3 | C12—C11—H11 | 121.0 |
H3A—C3—H3B | 108.0 | C10—C11—H11 | 121.0 |
N2—C4—C5 | 123.7 (4) | C13—C12—C11 | 119.4 (5) |
N2—C4—S1 | 118.8 (3) | C13—C12—H12 | 120.3 |
C5—C4—S1 | 117.5 (4) | C11—C12—H12 | 120.3 |
C4—C5—C6 | 117.9 (5) | C12—C13—C14 | 118.9 (4) |
C4—C5—H5 | 121.1 | C12—C13—H13 | 120.6 |
C6—C5—H5 | 121.1 | C14—C13—H13 | 120.6 |
C7—C6—C5 | 119.2 (5) | N3—C14—C13 | 123.3 (5) |
C7—C6—H6 | 120.4 | N3—C14—H14 | 118.3 |
C5—C6—H6 | 120.4 | C13—C14—H14 | 118.3 |
C8—C7—C6 | 118.6 (6) | ||
C1i—N1—C2—C1 | −0.5 (6) | C5—C6—C7—C8 | −2.0 (12) |
C1i—N1—C2—C9 | −179.4 (4) | C4—N2—C8—C7 | −0.3 (10) |
N1i—C1—C2—N1 | 0.5 (7) | C6—C7—C8—N2 | 2.0 (12) |
C3—C1—C2—N1 | 178.5 (4) | N1—C2—C9—S2 | 101.6 (4) |
N1i—C1—C2—C9 | 179.4 (4) | C1—C2—C9—S2 | −77.3 (5) |
C3—C1—C2—C9 | −2.6 (6) | C10—S2—C9—C2 | 139.0 (3) |
N1i—C1—C3—S1 | −49.8 (5) | C14—N3—C10—C11 | 0.8 (7) |
C2—C1—C3—S1 | 132.0 (4) | C14—N3—C10—S2 | −179.3 (4) |
C4—S1—C3—C1 | −155.3 (3) | C9—S2—C10—N3 | −11.3 (4) |
C8—N2—C4—C5 | −1.4 (9) | C9—S2—C10—C11 | 168.6 (4) |
C8—N2—C4—S1 | 178.8 (4) | N3—C10—C11—C12 | −0.3 (7) |
C3—S1—C4—N2 | 5.4 (5) | S2—C10—C11—C12 | 179.9 (4) |
C3—S1—C4—C5 | −174.4 (5) | C10—C11—C12—C13 | −0.1 (8) |
N2—C4—C5—C6 | 1.3 (9) | C11—C12—C13—C14 | −0.1 (8) |
S1—C4—C5—C6 | −178.9 (5) | C10—N3—C14—C13 | −1.1 (8) |
C4—C5—C6—C7 | 0.5 (11) | C12—C13—C14—N3 | 0.7 (8) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Cg2 is the centroid of pyridine ring N2/C4–C8. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···Cg2ii | 0.93 | 2.93 | 3.804 (6) | 156 |
Symmetry code: (ii) x, y−1, z. |
Acknowledgements
This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.
References
Assoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland. Google Scholar
Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219–o222. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2014a). Acta Cryst. E70, o887–o888. CSD CrossRef IUCr Journals Google Scholar
Assoumatine, T. & Stoeckli-Evans, H. (2014b). Acta Cryst. E70, 51–53. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152–o155. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.