organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,3,5,6-Tetra­kis{[(pyridin-2-yl)sulfan­yl]meth­yl}pyrazine

CROSSMARK_Color_square_no_text.svg

aCanAm Bioresearch Inc., 9-1250 Waverley Street, Winnipeg, Manitoba R3T 6C6, Canada, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 December 2016; accepted 10 December 2016; online 16 December 2016)

The title compound, C28H24N6S4, synthesized by the reaction of 2,3,5,6-tetra­kis­(bromo­meth­yl)pyrazine with 2-mercapto­pyridine, crystallizes with one half-mol­ecule in the asymmetric unit. The whole mol­ecule is generated by inversion symmetry, the centre of the pyrazine ring being located about an inversion centre. The pyridine rings of the unique (pyridin-2-ylsulfan­yl)methyl substituents are inclined to the pyrazine ring by 38.7 (3) and 75.6 (2)°, and by 66.0 (3)° to one another. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming chains along the b-axis direction. The chains are linked by offset ππ inter­actions [inter­centroid distance = 3.682 (3) Å], forming layers lying parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is one of a series of tetra-substituted pyrazine compounds (Pacifico & Stoeckli-Evans, 2004[Pacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152-o155.]; Assoumatine et al., 2007[Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219-o222.]; Assoumatine & Stoeckli-Evans, 2014a[Assoumatine, T. & Stoeckli-Evans, H. (2014a). Acta Cryst. E70, o887-o888.]), prepared in order to study their coordination behaviour with various transition metals (Assoumatine, 1999[Assoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland.]). It was synthesized by the reaction of 2,3,5,6-tetra­kis­(bromo­meth­yl)pyrazine (Assoumatine & Stoeckli-Evans, 2014b[Assoumatine, T. & Stoeckli-Evans, H. (2014b). Acta Cryst. E70, 51-53.]), with 2-mercapto­pyridine. The synthesis and crystal structure of 2,3,5,6-tetra­kis­(bromo­meth­yl)pyrazine have been reported (Assoumatine & Stoeckli-Evans, 2014b[Assoumatine, T. & Stoeckli-Evans, H. (2014b). Acta Cryst. E70, 51-53.]).

The title compound, crystallizes with one half-mol­ecule in the asymmetric unit (Fig. 1[link]). The whole mol­ecule is generated by inversion symmetry, the centre of the pyrazine ring being located about an inversion centre. The pyridine rings (N2/C4–C8 and N3/C10–C14) of the unique (pyridin-2-ylsulfan­yl)methyl substituents are inclined to the pyrazine ring by 38.7 (3) and 75.6 (2)°, respectively, and by 66.0 (3)° to one another. In the phenyl analogue of the title compound, viz. 2,3,5,6-tetra­kis­[(phenyl­sulfan­yl)meth­yl]pyrazine (Assoumatine et al., 2007[Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219-o222.]), the corresponding dihedral angles are 19.15 (7), 79.58 (7) and 60.45 (8)°, respectively.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (−x, 1 − y, 1 − z).

In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming chains along [010]; see Table 1[link] and Fig. 2[link]. The chains are linked by offset ππ inter­actions, forming layers lying parallel to the bc plane, as shown in Fig. 3[link]. The inter­centroid distances are Cg1⋯Cg3i = Cg1⋯Cg3ii = 3.682 (3) Å, inter­planar distances = 3.554 (2) Å, offsets = 1.142 Å; Cg1 and Cg3 are the centroids of the pyrazine ring and the pyridine ring N3/C10–C14; symmetry codes: (i) −x + 2, y + [{1\over 2}], −z + [{3\over 2}]; (ii) x, −y + [{1\over 2}], z + [{1\over 2}]. There are no other significant inter­molecular inter­actions present in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of pyridine ring N2/C4–C8.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg2i 0.93 2.93 3.804 (6) 156
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound. The C—H⋯π inter­actions are represented by dashed lines (Table 1[link]), and, for clarity, only H atom H11 (grey ball) has been included.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The C—H⋯π inter­actions (Table 1[link]) are represented by cyan dashed lines, and examples of the ππ inter­actions by orange dashed lines. For clarity, only H atom H11 (grey ball) has been included.

Synthesis and crystallization

To a magnetically stirred solution of 2-mercapto­pyridine (4 g, 35.4 mmol; Aldrich, 99%) in CH2Cl2 (100 ml), were added 2,3,5,6-tetra­kis­(bromo­meth­yl)pyrazine (4 g, 8.85 mmol) and tri­ethyl­amine (5 ml, 35.4 mmol; Fluka, 99.5%). The contents were heated at reflux for 30 min, cooled to room temperature, and diluted with CH2Cl2 (100 ml). The organic solution was washed with water (3 × 30 ml) and a saturated solution of NaCl (1 × 30 ml), dried over anhydrous MgSO4 and evaporated to dryness on a rotary evaporator after filtration. The resultant yellowish residue was recrystallized from aceto­nitrile solution and dried under vacuum to afford the title compound (yield 4.56 g, 90%; m.p. 422–423 K). Rf 0.48 (solvent CH2Cl2, eluent CHCl3/MeCO2Et, 7/5 v/v). Pale-yellow blocks were prepared by diffusion of an equal volume of ethanol into a concentrated CHCl3 (4 ml) solution of the title compound. Spectroscopic and analytical data: The principal peaks of the IR spectrum (KBr disc, cm−1) are: ν = 1579 vs, 1556 s, 1453 s, 1414 vs, 1124 vs, 754 vs, 723 s. 1H RMN (CDCl3, 400 MHz): δ = 8.35 [ddd, 3J(6,5) = 4.9, 4J(6,4) = 1.8, 5J(6,3) = 0.9, 4H, 6-PyH], 7.44 [ddd, 3J(4,3) = 8.1, 3J(4,5) = 7.4, 4J(4,6) = 1.9, 4H, 4-PyH), 7.24 (ddd, 3J(3,4) = 8.1, 4J(3,5) = 5J(3,6) = 1.0, 4H, 3-PyH], 6.95 [ddd, 3J(5,4) = 7.3, 3J(5,6) = 4.9, 4J(5,3) = 1.0, 4H, 5-PyH], 4.80 (s, 8H, Pz—CH2—S) p.p.m. 13C RMN (CDCl3, 100 MHz): δ = 159.01, 150.23, 149.88, 136.74, 122.65, 120.27, 33.88 p.p.m. Analysis for C28H24N6S4 (Mr = 572.82 g mol−1); calculated: C 58.71, H 4.23, N 14.68, S 22.39%; found: C 58.76, H 4.23, N 14.68, S 22.25%. MS (EI, 70 eV), m/z (%): 572 ([M+], 5.2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. No absorption correction was applied owing to the irregular shape of the crystal, and as there were no suitable reflections for ψ scans.

Table 2
Experimental details

Crystal data
Chemical formula C28H24N6S4
Mr 572.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.8139 (12), 7.4803 (11), 15.5204 (10)
β (°) 96.766 (8)
V3) 1362.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.27 × 0.25 × 0.15
 
Data collection
Diffractometer Stoe AED2 four-circle
No. of measured, independent and observed [I > 2σ(I)] reflections 3360, 2523, 1590
Rint 0.035
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.130, 1.14
No. of reflections 2523
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.24
Computer programs: STADI4 and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2,3,5,6-Tetrakis{[(pyridin-2-yl)sulfanyl]methyl}pyrazine top
Crystal data top
C28H24N6S4F(000) = 596
Mr = 572.77Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.8139 (12) ÅCell parameters from 28 reflections
b = 7.4803 (11) Åθ = 14.0–19.6°
c = 15.5204 (10) ŵ = 0.38 mm1
β = 96.766 (8)°T = 293 K
V = 1362.0 (3) Å3Block, pale yellow
Z = 20.27 × 0.25 × 0.15 mm
Data collection top
Stoe AED2 four-circle
diffractometer
Rint = 0.035
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.6°
Graphite monochromatorh = 1414
ω/2θ scansk = 09
3360 measured reflectionsl = 1818
2523 independent reflections3 standard reflections every 120 min
1590 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0077P)2 + 2.2742P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2523 reflectionsΔρmax = 0.31 e Å3
173 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72006 (10)0.7083 (2)0.88691 (7)0.0656 (5)
S20.87442 (11)0.2016 (2)0.80919 (7)0.0579 (4)
N11.0653 (3)0.3502 (5)0.98745 (19)0.0418 (9)
N20.6938 (3)0.6825 (6)0.7136 (2)0.0646 (12)
N30.8849 (3)0.3740 (6)0.6582 (2)0.0544 (11)
C10.9341 (3)0.5756 (6)0.9335 (2)0.0372 (10)
C21.0000 (3)0.4258 (6)0.9210 (2)0.0392 (11)
C30.8619 (3)0.6669 (7)0.8603 (2)0.0473 (12)
H3A0.85780.59260.80880.057*
H3B0.89700.77940.84750.057*
C40.6412 (4)0.7190 (7)0.7825 (3)0.0531 (13)
C50.5276 (4)0.7658 (8)0.7779 (4)0.0784 (18)
H50.49420.79270.82770.094*
C60.4649 (5)0.7715 (10)0.6969 (5)0.098 (2)
H60.38830.80330.69110.118*
C70.5171 (6)0.7297 (10)0.6251 (4)0.104 (3)
H70.47600.72910.57020.125*
C80.6291 (5)0.6895 (9)0.6359 (3)0.088 (2)
H80.66420.66510.58660.105*
C91.0016 (4)0.3364 (7)0.8342 (2)0.0480 (12)
H9A1.06870.26120.83540.058*
H9B1.00520.42630.78960.058*
C100.8353 (4)0.2440 (6)0.6968 (2)0.0441 (12)
C110.7524 (4)0.1338 (7)0.6552 (3)0.0609 (14)
H110.71990.04310.68510.073*
C120.7194 (4)0.1621 (8)0.5681 (3)0.0686 (16)
H120.66390.09020.53810.082*
C130.7684 (4)0.2955 (8)0.5268 (3)0.0659 (15)
H130.74720.31640.46810.079*
C140.8497 (4)0.3991 (8)0.5729 (3)0.0644 (15)
H140.88230.49140.54420.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0532 (7)0.1041 (12)0.0390 (6)0.0141 (8)0.0032 (5)0.0054 (8)
S20.0748 (9)0.0683 (9)0.0284 (5)0.0127 (8)0.0025 (5)0.0026 (6)
N10.045 (2)0.052 (2)0.0272 (16)0.0003 (18)0.0010 (14)0.0026 (17)
N20.063 (3)0.087 (3)0.040 (2)0.011 (3)0.0095 (19)0.001 (2)
N30.056 (2)0.073 (3)0.0325 (19)0.005 (2)0.0009 (17)0.001 (2)
C10.038 (2)0.050 (3)0.0222 (19)0.004 (2)0.0023 (16)0.0036 (19)
C20.037 (2)0.054 (3)0.0246 (19)0.004 (2)0.0048 (17)0.001 (2)
C30.047 (3)0.064 (3)0.030 (2)0.005 (2)0.0006 (18)0.005 (2)
C40.048 (3)0.057 (3)0.050 (3)0.004 (3)0.009 (2)0.010 (3)
C50.051 (3)0.100 (5)0.082 (4)0.017 (3)0.002 (3)0.013 (4)
C60.054 (4)0.111 (6)0.121 (6)0.013 (4)0.029 (4)0.017 (5)
C70.084 (5)0.133 (7)0.083 (5)0.011 (5)0.043 (4)0.010 (5)
C80.090 (4)0.115 (6)0.049 (3)0.013 (4)0.026 (3)0.005 (4)
C90.051 (3)0.066 (3)0.026 (2)0.002 (2)0.0009 (18)0.003 (2)
C100.046 (2)0.057 (3)0.028 (2)0.008 (2)0.0018 (18)0.012 (2)
C110.068 (3)0.067 (4)0.045 (3)0.010 (3)0.004 (2)0.004 (3)
C120.068 (4)0.089 (5)0.044 (3)0.005 (3)0.014 (2)0.015 (3)
C130.065 (3)0.098 (5)0.032 (2)0.006 (3)0.007 (2)0.005 (3)
C140.070 (3)0.086 (4)0.038 (2)0.001 (3)0.006 (2)0.010 (3)
Geometric parameters (Å, º) top
S1—C41.773 (4)C5—C61.383 (7)
S1—C31.799 (4)C5—H50.9300
S2—C101.780 (4)C6—C71.371 (9)
S2—C91.813 (4)C6—H60.9300
N1—C21.339 (5)C7—C81.349 (8)
N1—C1i1.346 (5)C7—H70.9300
N2—C41.328 (6)C8—H80.9300
N2—C81.349 (5)C9—H9A0.9700
N3—C101.315 (6)C9—H9B0.9700
N3—C141.353 (5)C10—C111.380 (6)
C1—N1i1.346 (5)C11—C121.379 (6)
C1—C21.390 (6)C11—H110.9300
C1—C31.502 (5)C12—C131.353 (7)
C2—C91.506 (5)C12—H120.9300
C3—H3A0.9700C13—C141.368 (7)
C3—H3B0.9700C13—H130.9300
C4—C51.380 (6)C14—H140.9300
C4—S1—C3101.7 (2)C8—C7—H7120.7
C10—S2—C9102.9 (2)C6—C7—H7120.7
C2—N1—C1i117.9 (4)N2—C8—C7124.3 (6)
C4—N2—C8116.3 (4)N2—C8—H8117.8
C10—N3—C14116.5 (4)C7—C8—H8117.8
N1i—C1—C2121.1 (3)C2—C9—S2109.9 (3)
N1i—C1—C3116.3 (4)C2—C9—H9A109.7
C2—C1—C3122.6 (3)S2—C9—H9A109.7
N1—C2—C1120.9 (4)C2—C9—H9B109.7
N1—C2—C9115.7 (4)S2—C9—H9B109.7
C1—C2—C9123.3 (4)H9A—C9—H9B108.2
C1—C3—S1111.5 (3)N3—C10—C11124.0 (4)
C1—C3—H3A109.3N3—C10—S2120.0 (3)
S1—C3—H3A109.3C11—C10—S2116.0 (4)
C1—C3—H3B109.3C12—C11—C10118.0 (5)
S1—C3—H3B109.3C12—C11—H11121.0
H3A—C3—H3B108.0C10—C11—H11121.0
N2—C4—C5123.7 (4)C13—C12—C11119.4 (5)
N2—C4—S1118.8 (3)C13—C12—H12120.3
C5—C4—S1117.5 (4)C11—C12—H12120.3
C4—C5—C6117.9 (5)C12—C13—C14118.9 (4)
C4—C5—H5121.1C12—C13—H13120.6
C6—C5—H5121.1C14—C13—H13120.6
C7—C6—C5119.2 (5)N3—C14—C13123.3 (5)
C7—C6—H6120.4N3—C14—H14118.3
C5—C6—H6120.4C13—C14—H14118.3
C8—C7—C6118.6 (6)
C1i—N1—C2—C10.5 (6)C5—C6—C7—C82.0 (12)
C1i—N1—C2—C9179.4 (4)C4—N2—C8—C70.3 (10)
N1i—C1—C2—N10.5 (7)C6—C7—C8—N22.0 (12)
C3—C1—C2—N1178.5 (4)N1—C2—C9—S2101.6 (4)
N1i—C1—C2—C9179.4 (4)C1—C2—C9—S277.3 (5)
C3—C1—C2—C92.6 (6)C10—S2—C9—C2139.0 (3)
N1i—C1—C3—S149.8 (5)C14—N3—C10—C110.8 (7)
C2—C1—C3—S1132.0 (4)C14—N3—C10—S2179.3 (4)
C4—S1—C3—C1155.3 (3)C9—S2—C10—N311.3 (4)
C8—N2—C4—C51.4 (9)C9—S2—C10—C11168.6 (4)
C8—N2—C4—S1178.8 (4)N3—C10—C11—C120.3 (7)
C3—S1—C4—N25.4 (5)S2—C10—C11—C12179.9 (4)
C3—S1—C4—C5174.4 (5)C10—C11—C12—C130.1 (8)
N2—C4—C5—C61.3 (9)C11—C12—C13—C140.1 (8)
S1—C4—C5—C6178.9 (5)C10—N3—C14—C131.1 (8)
C4—C5—C6—C70.5 (11)C12—C13—C14—N30.7 (8)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of pyridine ring N2/C4–C8.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg2ii0.932.933.804 (6)156
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.

References

First citationAssoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationAssoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219–o222.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2014a). Acta Cryst. E70, o887–o888.  CSD CrossRef IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2014b). Acta Cryst. E70, 51–53.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152–o155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds