organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(4-Meth­­oxy­phen­yl)-3-(2,4,5-tri­meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Shri Pillappa College of Engineering, Bengaluru 560 089, India, bDepartment of Physics, Prist University, Vallam, Tanjavur 513403, India, cInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, dDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Acharya Institute of Technology, Soldevanahalli, Bengaluru 560 107, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, manjunathhr@acharya.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 November 2016; accepted 3 December 2016; online 13 December 2016)

In the title chalcone derivative, C19H20O5, the dihedral angle between the planes of the benzene rings is 3.97 (8)°. In the monosubstituted ring, the meth­oxy C atom is almost coplanar with the ring [deviation = 0.016 (3) Å]. In the tris­ubstituted ring, the C atoms of the ortho, meta and para meth­oxy sustituents deviate by −0.030 (2), 1.127 (2) and −0.052 (2) Å, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming C(9) chains propagating along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing work on chalcone derivatives (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]), we herein report the synthesis and crystal structure of the title compound.

The ORTEP of the mol­ecule is shown in Fig. 1[link]. The central part of the mol­ecule is nearly planar: the dihedral angle between the benzene ring bridged by the olefinic double bond is 3.97 (8)°. The meth­oxy groups at C6, C4 and C16 are almost coplanar with the C1–C6 and C13–C18 benzene rings whereas the meth­oxy group at C3 lies outside the plane of the C1–C6 benzene ring, as indicated by the C7—O1—C3—C4 torsion angle of 78.1 (2)°. In the crystal, the mol­ecules are linked via weak C—H⋯O hydrogen bonds (Table 1[link]), forming chains propagating along [010] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19C⋯O4i 0.96 2.48 3.293 (3) 143
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2]
Figure 2
The packing of the mol­ecules, viewed along the [100] direction. The dashed lines represent hydrogen bonds.

Synthesis and crystallization

A mixture of 2,4,5-tri­meth­oxy­benzaldehyde (5 mmol), 1-(4-meth­oxy­phen­yl)ethanone (5 mmol) and sodium hydroxide (5 mmol) in 95% ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was poured into ice-cold water and kept in the refrigerator overnight. The solid that formed was filtered, and washed with cold hydro­chloric acid (5%). Yellow prisms were obtained from methanol solution by slow solvent evaporation. Yield 91%, m.p. 104–105°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H20O5
Mr 328.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.4043 (5), 8.5518 (5), 12.9352 (7)
α, β, γ (°) 75.400 (2), 88.427 (2), 68.014 (2)
V3) 831.91 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.29 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.806, 0.847
No. of measured, independent and observed [I > 2σ(I)] reflections 7500, 2684, 2528
Rint 0.038
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.172, 1.07
No. of reflections 2684
No. of parameters 221
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-1-(4-Methoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C19H20O5Z = 2
Mr = 328.35F(000) = 348
Triclinic, P1Dx = 1.311 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.4043 (5) ÅCell parameters from 2528 reflections
b = 8.5518 (5) Åθ = 5.7–64.2°
c = 12.9352 (7) ŵ = 0.78 mm1
α = 75.400 (2)°T = 296 K
β = 88.427 (2)°Prism, yellow
γ = 68.014 (2)°0.29 × 0.26 × 0.22 mm
V = 831.91 (8) Å3
Data collection top
Bruker X8 Proteum
diffractometer
2684 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2528 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.038
Detector resolution: 18.4 pixels mm-1θmax = 64.2°, θmin = 5.7°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 99
Tmin = 0.806, Tmax = 0.847l = 1515
7500 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1152P)2 + 0.1101P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08544 (15)0.66789 (16)0.33941 (9)0.0568 (4)
O20.14008 (16)1.00180 (16)0.23295 (10)0.0602 (4)
O30.30064 (17)0.99036 (16)0.47183 (10)0.0619 (4)
O40.57780 (19)0.52820 (17)0.76489 (11)0.0733 (5)
O50.7804 (2)0.26807 (16)0.98697 (11)0.0752 (5)
C10.23192 (19)0.7438 (2)0.48953 (12)0.0424 (5)
C20.1357 (2)0.6634 (2)0.45203 (12)0.0448 (5)
C30.0145 (2)0.7502 (2)0.36718 (12)0.0458 (5)
C40.0154 (2)0.9247 (2)0.31510 (12)0.0463 (5)
C50.0797 (2)1.0066 (2)0.34882 (12)0.0475 (5)
C60.20205 (19)0.9174 (2)0.43478 (12)0.0441 (5)
C70.0424 (3)0.6121 (3)0.24368 (16)0.0684 (7)
C80.1753 (2)1.1788 (2)0.17818 (14)0.0592 (5)
C90.2730 (2)1.1681 (2)0.42455 (16)0.0605 (6)
C100.3533 (2)0.6570 (2)0.58348 (12)0.0461 (5)
C110.4058 (2)0.4919 (2)0.64046 (12)0.0479 (5)
C120.5255 (2)0.4286 (2)0.73643 (13)0.0486 (5)
C130.58235 (19)0.2432 (2)0.79999 (12)0.0449 (5)
C140.7088 (2)0.1848 (2)0.88415 (13)0.0527 (5)
C150.7692 (2)0.0159 (2)0.94495 (14)0.0575 (6)
C160.7061 (2)0.1025 (2)0.92435 (12)0.0516 (5)
C170.5784 (2)0.0474 (2)0.84262 (13)0.0522 (6)
C180.5185 (2)0.1237 (2)0.78175 (13)0.0496 (5)
C190.7183 (4)0.3948 (3)0.9746 (2)0.0885 (9)
H20.154800.547600.485800.0540*
H50.061501.121800.313800.0570*
H7A0.071000.712400.183300.1030*
H7B0.105900.542700.235200.1030*
H7C0.078700.543600.248200.1030*
H8A0.208301.249500.228100.0890*
H8B0.267301.218200.123800.0890*
H8C0.074201.188300.145600.0890*
H9A0.299701.182700.351000.0910*
H9B0.345801.202200.462400.0910*
H9C0.154801.239800.428300.0910*
H100.400200.726300.606600.0550*
H110.366600.415400.619600.0580*
H140.752600.262600.898900.0630*
H150.853200.020001.000600.0690*
H170.533500.125100.829000.0630*
H180.433000.160000.727000.0600*
H19A0.603000.366000.996600.1330*
H19B0.790800.507501.018100.1330*
H19C0.718800.397300.900800.1330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0634 (8)0.0655 (8)0.0504 (7)0.0392 (6)0.0064 (5)0.0066 (5)
O20.0617 (8)0.0535 (7)0.0564 (7)0.0224 (6)0.0212 (5)0.0045 (5)
O30.0686 (8)0.0508 (7)0.0689 (8)0.0324 (6)0.0183 (6)0.0028 (6)
O40.0887 (10)0.0541 (8)0.0762 (9)0.0311 (7)0.0355 (7)0.0048 (6)
O50.1034 (11)0.0482 (7)0.0655 (8)0.0280 (7)0.0345 (7)0.0026 (6)
C10.0417 (8)0.0441 (8)0.0406 (8)0.0176 (6)0.0007 (6)0.0074 (6)
C20.0485 (9)0.0418 (8)0.0424 (8)0.0196 (7)0.0011 (6)0.0036 (6)
C30.0480 (8)0.0505 (9)0.0422 (8)0.0253 (7)0.0006 (6)0.0073 (6)
C40.0445 (8)0.0490 (9)0.0412 (8)0.0174 (7)0.0035 (6)0.0046 (6)
C50.0514 (9)0.0397 (8)0.0469 (9)0.0175 (7)0.0014 (7)0.0028 (6)
C60.0435 (8)0.0448 (8)0.0468 (8)0.0204 (6)0.0011 (6)0.0108 (6)
C70.0832 (13)0.0698 (12)0.0652 (11)0.0409 (10)0.0045 (9)0.0204 (9)
C80.0616 (10)0.0489 (9)0.0525 (9)0.0116 (8)0.0111 (7)0.0013 (7)
C90.0685 (11)0.0506 (10)0.0702 (11)0.0325 (8)0.0001 (8)0.0135 (8)
C100.0446 (8)0.0499 (9)0.0450 (8)0.0205 (7)0.0018 (6)0.0101 (7)
C110.0505 (9)0.0476 (9)0.0448 (8)0.0185 (7)0.0068 (6)0.0096 (7)
C120.0488 (9)0.0488 (9)0.0484 (9)0.0188 (7)0.0055 (7)0.0119 (7)
C130.0418 (8)0.0498 (9)0.0413 (8)0.0155 (7)0.0029 (6)0.0109 (7)
C140.0577 (10)0.0512 (9)0.0508 (9)0.0228 (8)0.0114 (7)0.0114 (7)
C150.0632 (11)0.0549 (10)0.0501 (9)0.0203 (8)0.0210 (7)0.0069 (7)
C160.0601 (10)0.0478 (9)0.0421 (8)0.0181 (7)0.0066 (7)0.0062 (6)
C170.0568 (10)0.0545 (10)0.0492 (9)0.0272 (8)0.0053 (7)0.0101 (7)
C180.0471 (9)0.0542 (9)0.0458 (8)0.0202 (7)0.0094 (6)0.0071 (7)
C190.129 (2)0.0526 (11)0.0811 (14)0.0407 (12)0.0277 (13)0.0008 (10)
Geometric parameters (Å, º) top
O1—C31.384 (2)C16—C171.387 (2)
O1—C71.427 (2)C17—C181.380 (2)
O2—C41.361 (2)C2—H20.9300
O2—C81.420 (2)C5—H50.9300
O3—C61.366 (2)C7—H7A0.9600
O3—C91.419 (2)C7—H7B0.9600
O4—C121.225 (2)C7—H7C0.9600
O5—C161.356 (2)C8—H8A0.9600
O5—C191.410 (3)C8—H8B0.9600
C1—C21.403 (2)C8—H8C0.9600
C1—C61.403 (2)C9—H9A0.9600
C1—C101.454 (2)C9—H9B0.9600
C2—C31.370 (2)C9—H9C0.9600
C3—C41.402 (2)C10—H100.9300
C4—C51.383 (2)C11—H110.9300
C5—C61.387 (2)C14—H140.9300
C10—C111.326 (2)C15—H150.9300
C11—C121.473 (2)C17—H170.9300
C12—C131.488 (2)C18—H180.9300
C13—C141.399 (2)C19—H19A0.9600
C13—C181.388 (2)C19—H19B0.9600
C14—C151.365 (2)C19—H19C0.9600
C15—C161.387 (2)
C3—O1—C7114.51 (15)O1—C7—H7A109.00
C4—O2—C8117.75 (14)O1—C7—H7B109.00
C6—O3—C9119.38 (14)O1—C7—H7C109.00
C16—O5—C19118.90 (17)H7A—C7—H7B110.00
C2—C1—C6117.17 (14)H7A—C7—H7C109.00
C2—C1—C10122.71 (15)H7B—C7—H7C109.00
C6—C1—C10120.08 (15)O2—C8—H8A109.00
C1—C2—C3122.07 (15)O2—C8—H8B109.00
O1—C3—C2119.19 (14)O2—C8—H8C109.00
O1—C3—C4120.94 (15)H8A—C8—H8B109.00
C2—C3—C4119.69 (16)H8A—C8—H8C110.00
O2—C4—C3115.81 (15)H8B—C8—H8C109.00
O2—C4—C5124.56 (15)O3—C9—H9A110.00
C3—C4—C5119.63 (15)O3—C9—H9B109.00
C4—C5—C6120.15 (15)O3—C9—H9C110.00
O3—C6—C1115.64 (14)H9A—C9—H9B109.00
O3—C6—C5123.09 (15)H9A—C9—H9C109.00
C1—C6—C5121.27 (15)H9B—C9—H9C109.00
C1—C10—C11128.37 (16)C1—C10—H10116.00
C10—C11—C12120.64 (15)C11—C10—H10116.00
O4—C12—C11120.34 (15)C10—C11—H11120.00
O4—C12—C13119.65 (15)C12—C11—H11120.00
C11—C12—C13120.01 (15)C13—C14—H14119.00
C12—C13—C14117.90 (15)C15—C14—H14119.00
C12—C13—C18124.59 (15)C14—C15—H15120.00
C14—C13—C18117.51 (15)C16—C15—H15120.00
C13—C14—C15121.25 (16)C16—C17—H17120.00
C14—C15—C16120.45 (16)C18—C17—H17120.00
O5—C16—C15115.28 (15)C13—C18—H18119.00
O5—C16—C17125.16 (16)C17—C18—H18119.00
C15—C16—C17119.54 (15)O5—C19—H19A109.00
C16—C17—C18119.41 (16)O5—C19—H19B109.00
C13—C18—C17121.83 (16)O5—C19—H19C109.00
C1—C2—H2119.00H19A—C19—H19B109.00
C3—C2—H2119.00H19A—C19—H19C110.00
C4—C5—H5120.00H19B—C19—H19C109.00
C6—C5—H5120.00
C7—O1—C3—C2106.74 (18)O2—C4—C5—C6178.85 (16)
C7—O1—C3—C478.1 (2)C3—C4—C5—C61.0 (2)
C8—O2—C4—C3179.72 (14)C4—C5—C6—O3179.76 (15)
C8—O2—C4—C50.2 (2)C4—C5—C6—C10.2 (2)
C9—O3—C6—C1176.91 (15)C1—C10—C11—C12177.62 (16)
C9—O3—C6—C53.1 (2)C10—C11—C12—O40.1 (3)
C19—O5—C16—C15177.11 (19)C10—C11—C12—C13179.59 (16)
C19—O5—C16—C174.3 (3)O4—C12—C13—C146.7 (2)
C6—C1—C2—C31.4 (2)O4—C12—C13—C18173.22 (17)
C10—C1—C2—C3176.10 (16)C11—C12—C13—C14173.85 (15)
C2—C1—C6—O3178.56 (14)C11—C12—C13—C186.2 (3)
C2—C1—C6—C51.4 (2)C12—C13—C14—C15179.02 (16)
C10—C1—C6—O33.8 (2)C18—C13—C14—C151.1 (3)
C10—C1—C6—C5176.17 (15)C12—C13—C18—C17179.03 (16)
C2—C1—C10—C117.4 (3)C14—C13—C18—C171.1 (3)
C6—C1—C10—C11175.12 (17)C13—C14—C15—C160.1 (3)
C1—C2—C3—O1174.99 (15)C14—C15—C16—O5177.44 (16)
C1—C2—C3—C40.2 (3)C14—C15—C16—C171.2 (3)
O1—C3—C4—O23.7 (2)O5—C16—C17—C18177.30 (16)
O1—C3—C4—C5176.17 (15)C15—C16—C17—C181.2 (3)
C2—C3—C4—O2178.85 (15)C16—C17—C18—C130.1 (3)
C2—C3—C4—C51.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O4i0.962.483.293 (3)143
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds