organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(4-Meth­­oxy­phen­yl)-1,3,4-oxa­diazol-2-amine

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, cDepartment of Physics, Acharya Institute of Technology, Soldevanahalli, Bengaluru 562 090, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: khalil.i@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 November 2016; accepted 27 November 2016; online 9 December 2016)

In the title compound, C9H9N3O2, the dihedral angle between the aromatic rings is 8.64 (10)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯N hydrogen bonds, generating R22(8) loops. A further N—H⋯N hydrogen bond links the dimers into (100) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Derivatives of 1,3,4-oxa­diazole exhibit a broad spectrum of pharmaceutical applications such as anti­bacterial, anti­convulsant (Taha et al., 2016[Taha, M., Ismail, N. H., Imran, S., Wadood, A., Rahim, F., Saad, S. M., Khan, K. M. & Nasir, A. (2016). Bioorg. Chem. 66, 117-123.]), anti-inflammatory, anti­cancer, analgesic and fungicidal. As a part of our ongoing research on such mol­ecules (Yasser et al., 2016[Mohammed, Y. H. I., Naveen, S., Lokanath, N. K. & Khanum, S. A. (2016). IUCrData, 1, x160416.]) we report herein on the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The mol­ecule is approximately planar as indicated by the dihedral angle value of 8.64 (10)° between the aromatic rings. The meth­oxy group lies almost in the plane of the phenyl ring as indicated by the torsion angle value of −5.1 (3)° for C9—O2—C5—C6. The crystal structure features inversion-related dimers linked by pairs of N—H⋯N hydrogen bonds generating [R_{2}^{2}](8) loops (Table 1[link] and Fig. 2[link]). A further N—H⋯N hydrogen bond links the dimers into (100) sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.09 2.924 (2) 163
N3—H3B⋯N1ii 0.86 2.13 2.969 (2) 164
Symmetry codes: (i) -x+2, -y+3, -z+2; (ii) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds, generating [R_{2}^{2}](8) loops. The right-hand molecule is generated by the symmetry operation 2 − x, 3 − y, 2 − z.

Synthesis and crystallization

To a solution of 1-(4-meth­oxy­benzyl­idene)semicarbazide in ethanol, chloramine-T was added and refluxed. The reaction was monitored by TLC and the after completion of the reaction, the sodium chloride formed in the reaction was filtered and the filtrate was concentrated and extracted to di­chloro­methane. The organic layer was washed with 10% hydro­chloric acid, the aqueous layer was neutralized with 10% sodium hydroxide and the white solid obtained was further purified. Colourless crystals formed after 3 days due to the slow evaporation of the solvent. Yield 84%, m.p. 246–248°C.

IR (KBr, γ/cm−1): 3409–3490 (COOH), 3050 (CH), 1730 (CO of COOH), 1675 (CO of OCOCH3). 1H NMR (400 MHz, DMSO-d6): δ 3.9 (s, 3H,CH3) 5.1 (s, 2H,NH2), 7.1–08.1 (m, 4H, ArH), 13C NMR: 155.32, 150.06, 129.21, 125.43, 124.31, 54.32. LCMS (M+): (191). Analysis calculated for C9H9N3O2: C, 56.54; H, 4.74; N, 21.98; found: C, 56.01; H, 4.56; N, 21.68%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H9N3O2
Mr 191.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 16.2029 (9), 5.0730 (3), 11.1133 (6)
β (°) 108.096 (3)
V3) 868.30 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.90
Crystal size (mm) 0.28 × 0.26 × 0.23
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.788, 0.821
No. of measured, independent and observed [I > 2σ(I)] reflections 5230, 1430, 1308
Rint 0.042
(sin θ/λ)max−1) 0.587
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.142, 1.15
No. of reflections 1430
No. of parameters 129
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

5-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine top
Crystal data top
C9H9N3O2F(000) = 400
Mr = 191.19Dx = 1.463 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1308 reflections
a = 16.2029 (9) Åθ = 8.0–64.8°
b = 5.0730 (3) ŵ = 0.90 mm1
c = 11.1133 (6) ÅT = 296 K
β = 108.096 (3)°Block, colourless
V = 868.30 (9) Å30.28 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
1430 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1308 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.042
Detector resolution: 18.4 pixels mm-1θmax = 64.8°, θmin = 8.0°
φ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 55
Tmin = 0.788, Tmax = 0.821l = 1212
5230 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.4652P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1430 reflectionsΔρmax = 0.32 e Å3
129 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (13)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H atoms were fixed geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and = 1.2Ueq(C) for the others.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84349 (8)1.0817 (3)0.83232 (11)0.0197 (4)
O20.58911 (9)0.4726 (3)0.65817 (13)0.0230 (4)
N10.88643 (10)1.0232 (3)1.03973 (15)0.0186 (5)
N20.93522 (10)1.2299 (3)1.01268 (14)0.0190 (5)
N30.93358 (12)1.4284 (4)0.81916 (15)0.0264 (6)
C10.90787 (12)1.2572 (4)0.88958 (17)0.0183 (6)
C20.83441 (12)0.9410 (4)0.93398 (17)0.0164 (6)
C30.76937 (12)0.7335 (4)0.91245 (17)0.0186 (6)
C40.70870 (12)0.6920 (4)0.79427 (17)0.0178 (6)
C50.64685 (12)0.4939 (4)0.77827 (18)0.0190 (6)
C60.64528 (13)0.3346 (4)0.87986 (19)0.0217 (6)
C70.70707 (13)0.3786 (4)0.99784 (18)0.0223 (6)
C80.76843 (12)0.5742 (4)1.01542 (18)0.0196 (6)
C90.52835 (14)0.2595 (4)0.6353 (2)0.0267 (7)
H3A0.973401.541200.854200.0320*
H3B0.910501.427200.738200.0320*
H40.709500.796600.725900.0210*
H60.604000.202000.869400.0260*
H70.706600.273101.066100.0270*
H80.808900.600701.094700.0230*
H9A0.559200.095100.650600.0400*
H9B0.491500.265600.549000.0400*
H9C0.493600.274800.690900.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (7)0.0219 (8)0.0132 (7)0.0060 (6)0.0029 (5)0.0003 (5)
O20.0206 (8)0.0251 (8)0.0201 (7)0.0072 (6)0.0016 (6)0.0015 (6)
N10.0196 (9)0.0198 (9)0.0157 (8)0.0016 (7)0.0045 (7)0.0003 (6)
N20.0197 (9)0.0217 (9)0.0149 (8)0.0040 (7)0.0042 (6)0.0002 (6)
N30.0309 (10)0.0317 (11)0.0131 (8)0.0154 (8)0.0017 (7)0.0001 (7)
C10.0177 (10)0.0206 (11)0.0151 (9)0.0029 (8)0.0030 (7)0.0026 (7)
C20.0186 (10)0.0176 (10)0.0132 (9)0.0007 (8)0.0053 (7)0.0016 (7)
C30.0193 (10)0.0191 (11)0.0178 (10)0.0023 (8)0.0065 (8)0.0003 (7)
C40.0199 (10)0.0183 (11)0.0161 (9)0.0009 (8)0.0069 (8)0.0016 (8)
C50.0192 (10)0.0197 (11)0.0176 (10)0.0028 (8)0.0050 (8)0.0025 (8)
C60.0208 (10)0.0202 (11)0.0254 (11)0.0012 (8)0.0089 (8)0.0004 (8)
C70.0261 (11)0.0212 (11)0.0215 (10)0.0033 (8)0.0103 (8)0.0047 (8)
C80.0199 (10)0.0216 (11)0.0172 (10)0.0031 (8)0.0058 (8)0.0007 (8)
C90.0256 (11)0.0225 (12)0.0288 (11)0.0055 (9)0.0039 (9)0.0034 (8)
Geometric parameters (Å, º) top
O1—C11.369 (2)C3—C41.391 (3)
O1—C21.382 (2)C4—C51.391 (3)
O2—C51.376 (2)C5—C61.395 (3)
O2—C91.431 (3)C6—C71.399 (3)
N1—N21.401 (2)C7—C81.375 (3)
N1—C21.285 (2)C4—H40.9300
N2—C11.308 (2)C6—H60.9300
N3—C11.320 (3)C7—H70.9300
N3—H3A0.8600C8—H80.9300
N3—H3B0.8600C9—H9A0.9600
C2—C31.456 (3)C9—H9B0.9600
C3—C81.405 (3)C9—H9C0.9600
C1—O1—C2102.42 (14)O2—C5—C6124.18 (18)
C5—O2—C9117.05 (16)C5—C6—C7118.59 (19)
N2—N1—C2107.48 (15)C6—C7—C8121.59 (18)
N1—N2—C1105.86 (15)C3—C8—C7119.32 (18)
H3A—N3—H3B120.00C3—C4—H4120.00
C1—N3—H3A120.00C5—C4—H4120.00
C1—N3—H3B120.00C5—C6—H6121.00
O1—C1—N2112.28 (17)C7—C6—H6121.00
N2—C1—N3128.53 (19)C6—C7—H7119.00
O1—C1—N3119.18 (16)C8—C7—H7119.00
N1—C2—C3128.38 (17)C3—C8—H8120.00
O1—C2—C3119.63 (16)C7—C8—H8120.00
O1—C2—N1111.96 (17)O2—C9—H9A109.00
C2—C3—C4121.87 (17)O2—C9—H9B109.00
C2—C3—C8118.20 (17)O2—C9—H9C109.00
C4—C3—C8119.93 (18)H9A—C9—H9B109.00
C3—C4—C5120.00 (18)H9A—C9—H9C109.00
C4—C5—C6120.57 (18)H9B—C9—H9C109.00
O2—C5—C4115.25 (17)
C2—O1—C1—N20.4 (2)N1—C2—C3—C4170.2 (2)
C2—O1—C1—N3179.58 (19)N1—C2—C3—C89.3 (3)
C1—O1—C2—N10.5 (2)C2—C3—C4—C5179.06 (19)
C1—O1—C2—C3178.77 (18)C8—C3—C4—C50.4 (3)
C9—O2—C5—C4175.65 (18)C2—C3—C8—C7179.34 (19)
C9—O2—C5—C65.1 (3)C4—C3—C8—C70.1 (3)
C2—N1—N2—C10.2 (2)C3—C4—C5—O2178.97 (18)
N2—N1—C2—O10.5 (2)C3—C4—C5—C60.3 (3)
N2—N1—C2—C3178.51 (19)O2—C5—C6—C7179.19 (19)
N1—N2—C1—O10.2 (2)C4—C5—C6—C70.1 (3)
N1—N2—C1—N3179.2 (2)C5—C6—C7—C80.2 (3)
O1—C2—C3—C47.8 (3)C6—C7—C8—C30.2 (3)
O1—C2—C3—C8172.78 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.092.924 (2)163
N3—H3B···N1ii0.862.132.969 (2)164
Symmetry codes: (i) x+2, y+3, z+2; (ii) x, y+5/2, z1/2.
 

Acknowledgements

The authors thank the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility. NP gratefully acknowledges the financial support of UGC MRP(S)-0551–13-14/KAMY013/UGC-SWRO. Zabiulla gratefully acknowledges the financial support provided by the Department of Science and Technology, New Delhi, under the INSPIRE–Fellowship scheme. SAK thankfully acknowledges the financial support provided by VGST, Bangalore, under the CISEE Programme.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohammed, Y. H. I., Naveen, S., Lokanath, N. K. & Khanum, S. A. (2016). IUCrData, 1, x160416.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Ismail, N. H., Imran, S., Wadood, A., Rahim, F., Saad, S. M., Khan, K. M. & Nasir, A. (2016). Bioorg. Chem. 66, 117–123.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds