organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2E)-3-Anilino-1-(2-chloro­phen­yl)-3-(methyl­sulfan­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Physics, SJB Institute of Technology, Kengeri,Bangalore 560 060, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 November 2016; accepted 15 December 2016; online 20 December 2016)

In the title compound, C16H14ClNOS, the dihedral angle between the aromatic rings is 86.34 (9)° and an intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. The methyl­sulfanyl group and Cl atom lie to the same side of the mol­ecule. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into (010) double sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

β-Enamino­nes are compounds containing the conjugated system —N—C=C—C=O and can also be defined as monoenamines of 1,3-dicarbonyl compounds or vinyl­ogous amides. β-Enamino­nes have been used in the synthesis of many heterocycles: for instance, biologically important isoxazoles (Dou et al., 2013[Dou, G., Xu, P., Li, Q., Xi, Y., Huang, Z. & Shi, D. (2013). Molecules, 18, 13645-13653.]), pyrroles (Yan et al., 2010[Yan, R. L., Luo, J., Wang, C. X., Ma, C. W., Huang, G. S. & Liang, Y. M. (2010). J. Org. Chem. 75, 5395-5397.]) and pyrazoles (Neumann et al., 2010[Neumann, J. J., Suri, M. & Glorius, F. (2010). Angew. Chem. Int. Ed. 49, 7790-7794.]) were synthesized from suitably substituted beta-enamino­nes. As part of our studies in this area, the title compound was synthesized and its crystal structure is reported here.

In the title compound (Fig. 1[link]), the mean plane of the aniline unit makes a dihedral angle of 86.34 (9)° with the chloro­benzene moiety. The enaminone group is present in a syn-clinal (C5—C6—C7—O8) conformation with respect to the chloro­benzene moiety, as indicated by the torsion angle value of 44.8 (3)°. This conformation is supported by an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds (Table 1[link]), generating (010) double sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O8 0.86 1.92 2.627 (2) 139
C12—H12A⋯O8i 0.96 2.35 3.237 (3) 153
C15—H15⋯O8ii 0.93 2.55 3.475 (3) 176
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

A mixture of 1-(2-chloro­phen­yl)-3,3-bis­(methyl­sulfan­yl)prop- 2-en-1-one, 1 (2.0 mmol, 1 equiv.) and aniline, 2 (2.6 mmol, 1.6 equiv.) was adsorbed on acidic silica and anhydrous AlCl3 (0.03 equiv.) was added. The reaction mixture was stirred vigorously at 60°C for 4 h. After completion of reaction (monitored by TLC), the crude compound was purified by silica gel column chromatography. Colourless prisms were obtained from chloro­form solution on slow evaporation at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H14ClNOS
Mr 303.79
Crystal system, space group Orthorhombic, Pccn
Temperature (K) 293
a, b, c (Å) 15.9745 (6), 25.7276 (10), 7.4153 (3)
V3) 3047.6 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 3.45
Crystal size (mm) 0.24 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2007)
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19433, 2521, 2372
Rint 0.050
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.06
No. of reflections 2521
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.46
Computer programs: SMART and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(2E)-3-Anilino-1-(2-chlorophenyl)-3-(methylsulfanyl)prop-2-en-1-one top
Crystal data top
C16H14ClNOSDx = 1.324 Mg m3
Mr = 303.79Melting point: 461 K
Orthorhombic, PccnCu Kα radiation, λ = 1.54178 Å
a = 15.9745 (6) ÅCell parameters from 2521 reflections
b = 25.7276 (10) Åθ = 5.5–64.5°
c = 7.4153 (3) ŵ = 3.45 mm1
V = 3047.6 (2) Å3T = 293 K
Z = 8Prism, colourless
F(000) = 12640.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
2521 independent reflections
Radiation source: fine-focus sealed tube2372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and φ scansθmax = 64.5°, θmin = 5.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1717
Tmin = 0.770, Tmax = 1.000k = 2929
19433 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.079P)2 + 1.4469P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2521 reflectionsΔρmax = 0.49 e Å3
181 parametersΔρmin = 0.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.80692 (3)0.46779 (2)0.21016 (8)0.0459 (2)
O80.54141 (10)0.53861 (6)0.2078 (3)0.0576 (5)
N130.64227 (11)0.45814 (7)0.1896 (3)0.0434 (4)
H130.59300.47160.18700.052*
C100.70480 (13)0.49199 (8)0.2154 (2)0.0359 (5)
C140.64485 (12)0.40362 (7)0.1658 (3)0.0383 (5)
C150.59380 (14)0.38200 (9)0.0350 (3)0.0479 (5)
H150.55970.40320.03520.057*
C10.63779 (15)0.66268 (9)0.2213 (3)0.0478 (5)
C60.59290 (13)0.62072 (9)0.2879 (3)0.0421 (5)
C180.69367 (16)0.31856 (10)0.2422 (4)0.0554 (6)
H180.72760.29710.31200.066*
C160.59351 (17)0.32902 (10)0.0088 (4)0.0567 (6)
H160.55890.31460.07880.068*
C90.68755 (13)0.54435 (8)0.2402 (3)0.0389 (5)
H90.73210.56700.25920.047*
C120.86963 (15)0.52501 (10)0.2226 (4)0.0572 (6)
H12A0.92780.51560.22060.086*
H12B0.85750.54700.12150.086*
H12C0.85740.54320.33250.086*
C190.69407 (16)0.37150 (9)0.2720 (3)0.0492 (6)
H190.72720.38560.36290.059*
C20.62222 (19)0.71335 (10)0.2789 (4)0.0627 (7)
H20.65310.74090.23230.075*
C70.60564 (13)0.56482 (8)0.2381 (3)0.0400 (5)
C170.64396 (15)0.29716 (9)0.1111 (4)0.0553 (6)
H170.64430.26150.09130.066*
C50.53032 (18)0.63185 (11)0.4144 (4)0.0628 (7)
H50.49800.60490.46070.075*
C40.5158 (2)0.68208 (15)0.4713 (4)0.0821 (10)
H40.47440.68860.55660.099*
C30.5617 (2)0.72210 (12)0.4031 (4)0.0741 (9)
H30.55140.75580.44230.089*
Cl200.71297 (6)0.65572 (3)0.05499 (12)0.0822 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0398 (4)0.0438 (4)0.0543 (4)0.0122 (2)0.0001 (2)0.0011 (2)
O80.0343 (9)0.0455 (9)0.0931 (13)0.0023 (7)0.0026 (8)0.0005 (8)
N130.0386 (10)0.0337 (9)0.0579 (11)0.0046 (7)0.0030 (8)0.0017 (8)
C100.0368 (11)0.0376 (11)0.0335 (10)0.0042 (8)0.0009 (7)0.0033 (8)
C140.0393 (11)0.0339 (10)0.0415 (10)0.0003 (8)0.0024 (8)0.0021 (8)
C150.0420 (12)0.0465 (12)0.0551 (13)0.0084 (9)0.0074 (10)0.0094 (10)
C10.0497 (13)0.0409 (12)0.0528 (13)0.0074 (10)0.0064 (10)0.0030 (9)
C60.0400 (11)0.0429 (12)0.0432 (11)0.0123 (9)0.0043 (9)0.0025 (9)
C180.0613 (16)0.0370 (12)0.0678 (15)0.0046 (10)0.0090 (12)0.0058 (11)
C160.0594 (15)0.0526 (13)0.0581 (13)0.0193 (11)0.0075 (12)0.0027 (11)
C90.0345 (11)0.0350 (11)0.0471 (11)0.0019 (8)0.0003 (8)0.0010 (9)
C120.0347 (12)0.0616 (15)0.0752 (17)0.0035 (11)0.0053 (11)0.0037 (12)
C190.0609 (15)0.0388 (12)0.0480 (12)0.0009 (10)0.0136 (10)0.0010 (9)
C20.0687 (17)0.0427 (13)0.0767 (17)0.0126 (12)0.0213 (14)0.0101 (12)
C70.0358 (11)0.0388 (11)0.0454 (11)0.0034 (9)0.0013 (8)0.0025 (8)
C170.0603 (15)0.0360 (11)0.0696 (15)0.0063 (10)0.0040 (12)0.0062 (11)
C50.0584 (15)0.0699 (16)0.0601 (14)0.0232 (13)0.0038 (12)0.0044 (13)
C40.080 (2)0.102 (3)0.0648 (17)0.047 (2)0.0060 (15)0.0224 (17)
C30.085 (2)0.0623 (17)0.0748 (18)0.0291 (16)0.0190 (16)0.0257 (15)
Cl200.0963 (6)0.0550 (4)0.0954 (6)0.0047 (3)0.0439 (4)0.0124 (3)
Geometric parameters (Å, º) top
S11—C101.747 (2)C18—H180.9300
S11—C121.783 (3)C16—C171.377 (4)
O8—C71.248 (3)C16—H160.9300
N13—C101.339 (3)C9—C71.411 (3)
N13—C141.414 (3)C9—H90.9300
N13—H130.8600C12—H12A0.9600
C10—C91.387 (3)C12—H12B0.9600
C14—C151.384 (3)C12—H12C0.9600
C14—C191.386 (3)C19—H190.9300
C15—C161.377 (3)C2—C31.354 (5)
C15—H150.9300C2—H20.9300
C1—C61.387 (3)C17—H170.9300
C1—C21.394 (3)C5—C41.379 (4)
C1—Cl201.731 (3)C5—H50.9300
C6—C51.400 (3)C4—C31.362 (5)
C6—C71.499 (3)C4—H40.9300
C18—C171.371 (4)C3—H30.9300
C18—C191.380 (3)
C10—S11—C12103.25 (11)S11—C12—H12A109.5
C10—N13—C14129.89 (18)S11—C12—H12B109.5
C10—N13—H13115.1H12A—C12—H12B109.5
C14—N13—H13115.1S11—C12—H12C109.5
N13—C10—C9120.16 (19)H12A—C12—H12C109.5
N13—C10—S11117.49 (16)H12B—C12—H12C109.5
C9—C10—S11122.32 (16)C18—C19—C14119.7 (2)
C15—C14—C19119.5 (2)C18—C19—H19120.2
C15—C14—N13117.94 (18)C14—C19—H19120.2
C19—C14—N13122.49 (19)C3—C2—C1119.4 (3)
C16—C15—C14119.9 (2)C3—C2—H2120.3
C16—C15—H15120.0C1—C2—H2120.3
C14—C15—H15120.0O8—C7—C9124.24 (19)
C6—C1—C2121.8 (2)O8—C7—C6116.82 (19)
C6—C1—Cl20122.15 (17)C9—C7—C6118.79 (19)
C2—C1—Cl20116.0 (2)C18—C17—C16119.4 (2)
C1—C6—C5116.7 (2)C18—C17—H17120.3
C1—C6—C7126.07 (19)C16—C17—H17120.3
C5—C6—C7117.3 (2)C4—C5—C6121.1 (3)
C17—C18—C19120.8 (2)C4—C5—H5119.4
C17—C18—H18119.6C6—C5—H5119.4
C19—C18—H18119.6C3—C4—C5120.3 (3)
C15—C16—C17120.7 (2)C3—C4—H4119.9
C15—C16—H16119.7C5—C4—H4119.9
C17—C16—H16119.7C2—C3—C4120.8 (3)
C10—C9—C7123.1 (2)C2—C3—H3119.6
C10—C9—H9118.5C4—C3—H3119.6
C7—C9—H9118.5
C14—N13—C10—C9178.4 (2)N13—C14—C19—C18179.9 (2)
C14—N13—C10—S113.3 (3)C6—C1—C2—C30.0 (4)
C12—S11—C10—N13173.40 (17)Cl20—C1—C2—C3177.2 (2)
C12—S11—C10—C94.9 (2)C10—C9—C7—O82.6 (3)
C10—N13—C14—C15137.6 (2)C10—C9—C7—C6172.84 (19)
C10—N13—C14—C1944.6 (3)C1—C6—C7—O8135.6 (2)
C19—C14—C15—C161.3 (3)C5—C6—C7—O844.8 (3)
N13—C14—C15—C16179.2 (2)C1—C6—C7—C948.6 (3)
C2—C1—C6—C50.8 (3)C5—C6—C7—C9131.0 (2)
Cl20—C1—C6—C5176.24 (18)C19—C18—C17—C160.4 (4)
C2—C1—C6—C7178.7 (2)C15—C16—C17—C181.2 (4)
Cl20—C1—C6—C74.2 (3)C1—C6—C5—C41.2 (4)
C14—C15—C16—C170.4 (4)C7—C6—C5—C4178.4 (2)
N13—C10—C9—C70.7 (3)C6—C5—C4—C30.9 (4)
S11—C10—C9—C7177.57 (16)C1—C2—C3—C40.4 (4)
C17—C18—C19—C141.3 (4)C5—C4—C3—C20.0 (5)
C15—C14—C19—C182.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O80.861.922.627 (2)139
C12—H12A···O8i0.962.353.237 (3)153
C15—H15···O8ii0.932.553.475 (3)176
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad for the CCD X-ray facilities.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDou, G., Xu, P., Li, Q., Xi, Y., Huang, Z. & Shi, D. (2013). Molecules, 18, 13645–13653.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeumann, J. J., Suri, M. & Glorius, F. (2010). Angew. Chem. Int. Ed. 49, 7790–7794.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYan, R. L., Luo, J., Wang, C. X., Ma, C. W., Huang, G. S. & Liang, Y. M. (2010). J. Org. Chem. 75, 5395–5397.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds