organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­methyl 4,4′-(di­methyl­silanedi­yl)dibenzoate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China, and bAdvanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: hrb1018@163.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 September 2016; accepted 25 November 2016; online 9 December 2016)

The complete mol­ecule of the title compound, C18H20O4Si, is generated by crystallographic twofold symmetry, with the Si atom lying on the rotation axis. The mol­ecule adopts a V-shape: the dihedral angle between the benzene ring and it attached methyl formate unit is 9.3 (2)°, and the dihedral angle between the benzene rings is 68.8 (1)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into [101] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, several reports have indicated that Si-based tetra­hedral organic mol­ecules have excellent emission properties (Li et al., 2015[Li, D. F., Huang, Z., Shang, X. H., Xia, Y., Zhang, Y. D., Li, M., Li, B. & Hou, R. B. (2015). Tetrahedron, 71, 2680-2685.]; Zhao et al., 2015[Zhao, Z. J., He, B. R. & Tang, B. Z. (2015). Chem. Sci. 6, 5347-5365.]; Shimada et al., 2015[Shimada, M., Yamanoi, Y., Matsushita, T., Kondo, T., Nishibori, E., Hatakeyama, A., Sugimoto, K. & Nishihara, H. (2015). J. Am. Chem. Soc. 137, 1024-1027.]). As a typical example, Liu and co-workers recently reported a series of tetra­hedral luminescent materials comprising SiAr4 cores (Tang et al., 2014[Tang, X., Yao, L., Liu, H., Shen, F., Zhang, S., Zhang, H., Lu, P. & Ma, Y. (2014). Chem. Eur. J. 20, 7589-7592.]). They found that their fluorene derivatives were efficient blue-light-emitting materials and that Si-centered materials were superior with regard to film formation ability and quantum efficiency. A noteworthy feature of Si-centered tetra­hedral materials is their high photoluminescence efficiency (nearly 100%) in the condensed state. In this paper, we report the crystal structure of the title compound, which is a precursor of these organosilicon compounds.

The complete mol­ecule (Fig. 1[link]) is generated by crystallographic twofold symmetry with the silicon atom lying on the rotation axis. The C—Si—C angles vary from 106.0 (1)° to 112.3 (1)°. The Si—C bond lengths of 1.866 (2) and 1.887 (2) Å are comparable with those in related structures (Ziller et al., 1993[Ziller, J. W., Schaber, P. M. & Dinan, F. J. (1993). Acta Cryst. C49, 1430-1432.]; Yoshida et al., 2005[Yoshida, H., Ikadai, J., Shudo, M., Ohshita, J. & Kunai, A. (2005). Organometallics, 24, 156-162.]; Tsutsui & Sakamoto, 2003[Tsutsui, S. & Sakamoto, K. (2003). Chem. Commun. pp. 2322-2323.]). The mol­ecule adopts a V-shape and the dihedral angle between the benzene rings is 68.78 (7)°.

[Figure 1]
Figure 1
The molecular structure of the title compound.

In the crystal, there are weak C—H⋯O hydrogen bonds (Fig. 2[link] and Table 1[link]). Atom O2 accepts two such bonds, resulting in an aggregation of three mol­ecules. The trimers are further linked to each other to form a double zigzag chain propagating along the [101] direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.96 2.62 3.511 (2) 154
C9—H9C⋯O2ii 0.96 2.53 3.465 (3) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The packing of the title compound.

Synthesis and crystallization

The title compound was prepared according to a literature method (Tang et al., 2007[Tang, H. Y., Song, N. H., Gao, Z. H., Chen, X. F., Fan, X. H., Xiang, Q. & Zhou, Q. F. (2007). Polymer, 48, 129-138.]). Colourless blocks were prepared by recrystallization from a solvent mixture of di­chloro­methane and petroleum.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H20O4Si
Mr 328.43
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 15.869 (3), 9.991 (2), 12.328 (3)
β (°) 117.79 (3)
V3) 1729.1 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.36 × 0.35 × 0.18
 
Data collection
Diffractometer Rigaku R-AXIS RAPID CCD
Absorption correction Multi-scan (RAPID-AUTO; Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Inc., Toyko, Japan.])
Tmin, Tmax 0.948, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 8251, 1974, 1647
Rint 0.027
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.06
No. of reflections 1974
No. of parameters 107
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.15
Computer programs: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Inc., Toyko, Japan.]), CrystalStructure (Rigaku/MSC and Rigaku, 2002[Rigaku (2002). CrystalStructure. Rigaku Inc., Toyko, Japan.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Dimethyl 4,4'-(dimethylsilanediyl)dibenzoate top
Crystal data top
C18H20O4SiF(000) = 696
Mr = 328.43Dx = 1.262 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7030 reflections
a = 15.869 (3) Åθ = 3.5–27.5°
b = 9.991 (2) ŵ = 0.15 mm1
c = 12.328 (3) ÅT = 296 K
β = 117.79 (3)°Block, colorless
V = 1729.1 (6) Å30.36 × 0.35 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
1974 independent reflections
Radiation source: fine-focus sealed tube1647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 1998)
h = 2017
Tmin = 0.948, Tmax = 0.974k = 1212
8251 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.2156P]
where P = (Fo2 + 2Fc2)/3
1974 reflections(Δ/σ)max = 0.010
107 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54323 (13)0.86561 (16)1.16029 (15)0.0529 (4)
H1A0.49530.93001.11250.079*
H1B0.55600.80901.10680.079*
H1C0.60050.91131.21550.079*
C20.40084 (10)0.64788 (13)1.14363 (12)0.0378 (3)
C30.41296 (11)0.56740 (17)1.05964 (16)0.0522 (4)
H30.47020.57151.05620.063*
C40.34246 (11)0.48152 (17)0.98120 (15)0.0513 (4)
H40.35210.43030.92490.062*
C50.25723 (9)0.47202 (14)0.98686 (13)0.0400 (3)
C60.24381 (11)0.54968 (16)1.07046 (15)0.0487 (4)
H60.18710.54341.07520.058*
C70.31455 (11)0.63684 (16)1.14723 (14)0.0470 (4)
H70.30420.68911.20230.056*
C80.17949 (10)0.37917 (15)0.90651 (13)0.0437 (4)
C90.12150 (13)0.23692 (19)0.73424 (17)0.0623 (5)
H9A0.11190.16430.77830.094*
H9B0.14010.20200.67610.094*
H9C0.06330.28660.69180.094*
O10.19538 (8)0.32396 (12)0.81941 (11)0.0559 (3)
O20.10978 (9)0.35693 (14)0.91819 (12)0.0667 (4)
Si10.50000.76151 (5)1.25000.0378 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0619 (10)0.0484 (8)0.0529 (9)0.0023 (7)0.0306 (8)0.0075 (7)
C20.0385 (7)0.0404 (7)0.0336 (6)0.0032 (5)0.0160 (5)0.0029 (5)
C30.0419 (8)0.0650 (10)0.0570 (9)0.0078 (7)0.0292 (7)0.0168 (7)
C40.0490 (8)0.0608 (9)0.0518 (9)0.0065 (7)0.0301 (7)0.0167 (7)
C50.0361 (7)0.0427 (7)0.0376 (7)0.0020 (5)0.0140 (5)0.0029 (5)
C60.0376 (7)0.0605 (9)0.0518 (9)0.0015 (6)0.0241 (7)0.0045 (7)
C70.0466 (8)0.0536 (8)0.0454 (8)0.0013 (6)0.0253 (7)0.0074 (6)
C80.0385 (7)0.0453 (8)0.0424 (8)0.0021 (5)0.0148 (6)0.0022 (6)
C90.0545 (10)0.0659 (11)0.0546 (10)0.0100 (8)0.0153 (8)0.0173 (8)
O10.0473 (6)0.0658 (7)0.0525 (7)0.0100 (5)0.0215 (5)0.0177 (5)
O20.0516 (7)0.0819 (9)0.0720 (9)0.0195 (6)0.0333 (6)0.0199 (7)
Si10.0413 (3)0.0377 (3)0.0356 (3)0.0000.0188 (2)0.000
Geometric parameters (Å, º) top
C1—Si11.8662 (16)C5—C81.491 (2)
C1—H1A0.9600C6—C71.387 (2)
C1—H1B0.9600C6—H60.9300
C1—H1C0.9600C7—H70.9300
C2—C31.393 (2)C8—O21.2009 (19)
C2—C71.395 (2)C8—O11.3318 (19)
C2—Si11.8869 (15)C9—O11.4440 (19)
C3—C41.383 (2)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C4—C51.390 (2)C9—H9C0.9600
C4—H40.9300Si1—C1i1.8662 (16)
C5—C61.383 (2)Si1—C2i1.8869 (15)
Si1—C1—H1A109.5C7—C6—H6119.9
Si1—C1—H1B109.5C6—C7—C2121.47 (14)
H1A—C1—H1B109.5C6—C7—H7119.3
Si1—C1—H1C109.5C2—C7—H7119.3
H1A—C1—H1C109.5O2—C8—O1123.46 (14)
H1B—C1—H1C109.5O2—C8—C5123.95 (14)
C3—C2—C7117.11 (13)O1—C8—C5112.59 (13)
C3—C2—Si1120.29 (11)O1—C9—H9A109.5
C7—C2—Si1122.57 (11)O1—C9—H9B109.5
C4—C3—C2122.03 (14)H9A—C9—H9B109.5
C4—C3—H3119.0O1—C9—H9C109.5
C2—C3—H3119.0H9A—C9—H9C109.5
C3—C4—C5119.74 (14)H9B—C9—H9C109.5
C3—C4—H4120.1C8—O1—C9116.16 (13)
C5—C4—H4120.1C1i—Si1—C1112.26 (11)
C6—C5—C4119.38 (14)C1i—Si1—C2109.23 (7)
C6—C5—C8118.47 (13)C1—Si1—C2109.96 (7)
C4—C5—C8122.15 (14)C1i—Si1—C2i109.96 (7)
C5—C6—C7120.25 (14)C1—Si1—C2i109.23 (7)
C5—C6—H6119.9C2—Si1—C2i106.02 (9)
C7—C2—C3—C41.1 (2)C4—C5—C8—O2171.12 (16)
Si1—C2—C3—C4179.15 (13)C6—C5—C8—O1171.45 (13)
C2—C3—C4—C51.3 (3)C4—C5—C8—O19.3 (2)
C3—C4—C5—C60.5 (2)O2—C8—O1—C92.1 (2)
C3—C4—C5—C8178.70 (15)C5—C8—O1—C9177.48 (13)
C4—C5—C6—C70.5 (2)C3—C2—Si1—C1i174.94 (12)
C8—C5—C6—C7179.71 (14)C7—C2—Si1—C1i7.11 (14)
C5—C6—C7—C20.7 (2)C3—C2—Si1—C151.33 (14)
C3—C2—C7—C60.1 (2)C7—C2—Si1—C1130.71 (13)
Si1—C2—C7—C6178.09 (12)C3—C2—Si1—C2i66.63 (12)
C6—C5—C8—O28.1 (2)C7—C2—Si1—C2i111.33 (13)
Symmetry code: (i) x+1, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2ii0.962.623.511 (2)154
C9—H9C···O2iii0.962.533.465 (3)164
Symmetry codes: (ii) x+1/2, y+3/2, z+2; (iii) x, y, z+3/2.
 

Acknowledgements

This work was supported by the National Science Foundation of China (grant No. 21442004) and the Education Office of Jilin Province (grant No. 2016320).

References

First citationLi, D. F., Huang, Z., Shang, X. H., Xia, Y., Zhang, Y. D., Li, M., Li, B. & Hou, R. B. (2015). Tetrahedron, 71, 2680–2685.  CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Inc., Toyko, Japan.  Google Scholar
First citationRigaku (2002). CrystalStructure. Rigaku Inc., Toyko, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, M., Yamanoi, Y., Matsushita, T., Kondo, T., Nishibori, E., Hatakeyama, A., Sugimoto, K. & Nishihara, H. (2015). J. Am. Chem. Soc. 137, 1024–1027.  CSD CrossRef CAS Google Scholar
First citationTang, H. Y., Song, N. H., Gao, Z. H., Chen, X. F., Fan, X. H., Xiang, Q. & Zhou, Q. F. (2007). Polymer, 48, 129–138.  CrossRef CAS Google Scholar
First citationTang, X., Yao, L., Liu, H., Shen, F., Zhang, S., Zhang, H., Lu, P. & Ma, Y. (2014). Chem. Eur. J. 20, 7589–7592.  CrossRef CAS Google Scholar
First citationTsutsui, S. & Sakamoto, K. (2003). Chem. Commun. pp. 2322–2323.  CSD CrossRef Google Scholar
First citationYoshida, H., Ikadai, J., Shudo, M., Ohshita, J. & Kunai, A. (2005). Organometallics, 24, 156–162.  CSD CrossRef CAS Google Scholar
First citationZhao, Z. J., He, B. R. & Tang, B. Z. (2015). Chem. Sci. 6, 5347–5365.  CrossRef CAS Google Scholar
First citationZiller, J. W., Schaber, P. M. & Dinan, F. J. (1993). Acta Cryst. C49, 1430–1432.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds