organic compounds
Dimethyl 4,4′-(dimethylsilanediyl)dibenzoate
aSchool of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China, and bAdvanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: hrb1018@163.com
The complete molecule of the title compound, C18H20O4Si, is generated by crystallographic twofold symmetry, with the Si atom lying on the rotation axis. The molecule adopts a V-shape: the dihedral angle between the benzene ring and it attached methyl formate unit is 9.3 (2)°, and the dihedral angle between the benzene rings is 68.8 (1)°. In the crystal, weak C—H⋯O hydrogen bonds link the molecules into [101] chains.
Keywords: crystal structure; organosilicon; C—H⋯O interactions.
CCDC reference: 1519189
Structure description
Recently, several reports have indicated that Si-based tetrahedral organic molecules have excellent emission properties (Li et al., 2015; Zhao et al., 2015; Shimada et al., 2015). As a typical example, Liu and co-workers recently reported a series of tetrahedral luminescent materials comprising SiAr4 cores (Tang et al., 2014). They found that their fluorene derivatives were efficient blue-light-emitting materials and that Si-centered materials were superior with regard to film formation ability and A noteworthy feature of Si-centered tetrahedral materials is their high efficiency (nearly 100%) in the condensed state. In this paper, we report the of the title compound, which is a precursor of these organosilicon compounds.
The complete molecule (Fig. 1) is generated by crystallographic twofold symmetry with the silicon atom lying on the rotation axis. The C—Si—C angles vary from 106.0 (1)° to 112.3 (1)°. The Si—C bond lengths of 1.866 (2) and 1.887 (2) Å are comparable with those in related structures (Ziller et al., 1993; Yoshida et al., 2005; Tsutsui & Sakamoto, 2003). The molecule adopts a V-shape and the dihedral angle between the benzene rings is 68.78 (7)°.
In the crystal, there are weak C—H⋯O hydrogen bonds (Fig. 2 and Table 1). Atom O2 accepts two such bonds, resulting in an aggregation of three molecules. The trimers are further linked to each other to form a double zigzag chain propagating along the [101] direction.
Synthesis and crystallization
The title compound was prepared according to a literature method (Tang et al., 2007). Colourless blocks were prepared by recrystallization from a solvent mixture of dichloromethane and petroleum.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1519189
https://doi.org/10.1107/S2414314616018873/hb4082sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616018873/hb4082Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616018873/hb4082Isup3.cml
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C18H20O4Si | F(000) = 696 |
Mr = 328.43 | Dx = 1.262 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 7030 reflections |
a = 15.869 (3) Å | θ = 3.5–27.5° |
b = 9.991 (2) Å | µ = 0.15 mm−1 |
c = 12.328 (3) Å | T = 296 K |
β = 117.79 (3)° | Block, colorless |
V = 1729.1 (6) Å3 | 0.36 × 0.35 × 0.18 mm |
Z = 4 |
Rigaku R-AXIS RAPID CCD diffractometer | 1974 independent reflections |
Radiation source: fine-focus sealed tube | 1647 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 27.5°, θmin = 3.5° |
Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 1998) | h = −20→17 |
Tmin = 0.948, Tmax = 0.974 | k = −12→12 |
8251 measured reflections | l = −15→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0867P)2 + 0.2156P] where P = (Fo2 + 2Fc2)/3 |
1974 reflections | (Δ/σ)max = 0.010 |
107 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.54323 (13) | 0.86561 (16) | 1.16029 (15) | 0.0529 (4) | |
H1A | 0.4953 | 0.9300 | 1.1125 | 0.079* | |
H1B | 0.5560 | 0.8090 | 1.1068 | 0.079* | |
H1C | 0.6005 | 0.9113 | 1.2155 | 0.079* | |
C2 | 0.40084 (10) | 0.64788 (13) | 1.14363 (12) | 0.0378 (3) | |
C3 | 0.41296 (11) | 0.56740 (17) | 1.05964 (16) | 0.0522 (4) | |
H3 | 0.4702 | 0.5715 | 1.0562 | 0.063* | |
C4 | 0.34246 (11) | 0.48152 (17) | 0.98120 (15) | 0.0513 (4) | |
H4 | 0.3521 | 0.4303 | 0.9249 | 0.062* | |
C5 | 0.25723 (9) | 0.47202 (14) | 0.98686 (13) | 0.0400 (3) | |
C6 | 0.24381 (11) | 0.54968 (16) | 1.07046 (15) | 0.0487 (4) | |
H6 | 0.1871 | 0.5434 | 1.0752 | 0.058* | |
C7 | 0.31455 (11) | 0.63684 (16) | 1.14723 (14) | 0.0470 (4) | |
H7 | 0.3042 | 0.6891 | 1.2023 | 0.056* | |
C8 | 0.17949 (10) | 0.37917 (15) | 0.90651 (13) | 0.0437 (4) | |
C9 | 0.12150 (13) | 0.23692 (19) | 0.73424 (17) | 0.0623 (5) | |
H9A | 0.1119 | 0.1643 | 0.7783 | 0.094* | |
H9B | 0.1401 | 0.2020 | 0.6761 | 0.094* | |
H9C | 0.0633 | 0.2866 | 0.6918 | 0.094* | |
O1 | 0.19538 (8) | 0.32396 (12) | 0.81941 (11) | 0.0559 (3) | |
O2 | 0.10978 (9) | 0.35693 (14) | 0.91819 (12) | 0.0667 (4) | |
Si1 | 0.5000 | 0.76151 (5) | 1.2500 | 0.0378 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0619 (10) | 0.0484 (8) | 0.0529 (9) | −0.0023 (7) | 0.0306 (8) | 0.0075 (7) |
C2 | 0.0385 (7) | 0.0404 (7) | 0.0336 (6) | 0.0032 (5) | 0.0160 (5) | 0.0029 (5) |
C3 | 0.0419 (8) | 0.0650 (10) | 0.0570 (9) | −0.0078 (7) | 0.0292 (7) | −0.0168 (7) |
C4 | 0.0490 (8) | 0.0608 (9) | 0.0518 (9) | −0.0065 (7) | 0.0301 (7) | −0.0167 (7) |
C5 | 0.0361 (7) | 0.0427 (7) | 0.0376 (7) | 0.0020 (5) | 0.0140 (5) | 0.0029 (5) |
C6 | 0.0376 (7) | 0.0605 (9) | 0.0518 (9) | −0.0015 (6) | 0.0241 (7) | −0.0045 (7) |
C7 | 0.0466 (8) | 0.0536 (8) | 0.0454 (8) | 0.0013 (6) | 0.0253 (7) | −0.0074 (6) |
C8 | 0.0385 (7) | 0.0453 (8) | 0.0424 (8) | 0.0021 (5) | 0.0148 (6) | 0.0022 (6) |
C9 | 0.0545 (10) | 0.0659 (11) | 0.0546 (10) | −0.0100 (8) | 0.0153 (8) | −0.0173 (8) |
O1 | 0.0473 (6) | 0.0658 (7) | 0.0525 (7) | −0.0100 (5) | 0.0215 (5) | −0.0177 (5) |
O2 | 0.0516 (7) | 0.0819 (9) | 0.0720 (9) | −0.0195 (6) | 0.0333 (6) | −0.0199 (7) |
Si1 | 0.0413 (3) | 0.0377 (3) | 0.0356 (3) | 0.000 | 0.0188 (2) | 0.000 |
C1—Si1 | 1.8662 (16) | C5—C8 | 1.491 (2) |
C1—H1A | 0.9600 | C6—C7 | 1.387 (2) |
C1—H1B | 0.9600 | C6—H6 | 0.9300 |
C1—H1C | 0.9600 | C7—H7 | 0.9300 |
C2—C3 | 1.393 (2) | C8—O2 | 1.2009 (19) |
C2—C7 | 1.395 (2) | C8—O1 | 1.3318 (19) |
C2—Si1 | 1.8869 (15) | C9—O1 | 1.4440 (19) |
C3—C4 | 1.383 (2) | C9—H9A | 0.9600 |
C3—H3 | 0.9300 | C9—H9B | 0.9600 |
C4—C5 | 1.390 (2) | C9—H9C | 0.9600 |
C4—H4 | 0.9300 | Si1—C1i | 1.8662 (16) |
C5—C6 | 1.383 (2) | Si1—C2i | 1.8869 (15) |
Si1—C1—H1A | 109.5 | C7—C6—H6 | 119.9 |
Si1—C1—H1B | 109.5 | C6—C7—C2 | 121.47 (14) |
H1A—C1—H1B | 109.5 | C6—C7—H7 | 119.3 |
Si1—C1—H1C | 109.5 | C2—C7—H7 | 119.3 |
H1A—C1—H1C | 109.5 | O2—C8—O1 | 123.46 (14) |
H1B—C1—H1C | 109.5 | O2—C8—C5 | 123.95 (14) |
C3—C2—C7 | 117.11 (13) | O1—C8—C5 | 112.59 (13) |
C3—C2—Si1 | 120.29 (11) | O1—C9—H9A | 109.5 |
C7—C2—Si1 | 122.57 (11) | O1—C9—H9B | 109.5 |
C4—C3—C2 | 122.03 (14) | H9A—C9—H9B | 109.5 |
C4—C3—H3 | 119.0 | O1—C9—H9C | 109.5 |
C2—C3—H3 | 119.0 | H9A—C9—H9C | 109.5 |
C3—C4—C5 | 119.74 (14) | H9B—C9—H9C | 109.5 |
C3—C4—H4 | 120.1 | C8—O1—C9 | 116.16 (13) |
C5—C4—H4 | 120.1 | C1i—Si1—C1 | 112.26 (11) |
C6—C5—C4 | 119.38 (14) | C1i—Si1—C2 | 109.23 (7) |
C6—C5—C8 | 118.47 (13) | C1—Si1—C2 | 109.96 (7) |
C4—C5—C8 | 122.15 (14) | C1i—Si1—C2i | 109.96 (7) |
C5—C6—C7 | 120.25 (14) | C1—Si1—C2i | 109.23 (7) |
C5—C6—H6 | 119.9 | C2—Si1—C2i | 106.02 (9) |
C7—C2—C3—C4 | 1.1 (2) | C4—C5—C8—O2 | 171.12 (16) |
Si1—C2—C3—C4 | 179.15 (13) | C6—C5—C8—O1 | 171.45 (13) |
C2—C3—C4—C5 | −1.3 (3) | C4—C5—C8—O1 | −9.3 (2) |
C3—C4—C5—C6 | 0.5 (2) | O2—C8—O1—C9 | 2.1 (2) |
C3—C4—C5—C8 | −178.70 (15) | C5—C8—O1—C9 | −177.48 (13) |
C4—C5—C6—C7 | 0.5 (2) | C3—C2—Si1—C1i | 174.94 (12) |
C8—C5—C6—C7 | 179.71 (14) | C7—C2—Si1—C1i | −7.11 (14) |
C5—C6—C7—C2 | −0.7 (2) | C3—C2—Si1—C1 | 51.33 (14) |
C3—C2—C7—C6 | −0.1 (2) | C7—C2—Si1—C1 | −130.71 (13) |
Si1—C2—C7—C6 | −178.09 (12) | C3—C2—Si1—C2i | −66.63 (12) |
C6—C5—C8—O2 | −8.1 (2) | C7—C2—Si1—C2i | 111.33 (13) |
Symmetry code: (i) −x+1, y, −z+5/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2ii | 0.96 | 2.62 | 3.511 (2) | 154 |
C9—H9C···O2iii | 0.96 | 2.53 | 3.465 (3) | 164 |
Symmetry codes: (ii) −x+1/2, −y+3/2, −z+2; (iii) −x, y, −z+3/2. |
Acknowledgements
This work was supported by the National Science Foundation of China (grant No. 21442004) and the Education Office of Jilin Province (grant No. 2016320).
References
Li, D. F., Huang, Z., Shang, X. H., Xia, Y., Zhang, Y. D., Li, M., Li, B. & Hou, R. B. (2015). Tetrahedron, 71, 2680–2685. CSD CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Inc., Toyko, Japan. Google Scholar
Rigaku (2002). CrystalStructure. Rigaku Inc., Toyko, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimada, M., Yamanoi, Y., Matsushita, T., Kondo, T., Nishibori, E., Hatakeyama, A., Sugimoto, K. & Nishihara, H. (2015). J. Am. Chem. Soc. 137, 1024–1027. CSD CrossRef CAS Google Scholar
Tang, H. Y., Song, N. H., Gao, Z. H., Chen, X. F., Fan, X. H., Xiang, Q. & Zhou, Q. F. (2007). Polymer, 48, 129–138. CrossRef CAS Google Scholar
Tang, X., Yao, L., Liu, H., Shen, F., Zhang, S., Zhang, H., Lu, P. & Ma, Y. (2014). Chem. Eur. J. 20, 7589–7592. CrossRef CAS Google Scholar
Tsutsui, S. & Sakamoto, K. (2003). Chem. Commun. pp. 2322–2323. CSD CrossRef Google Scholar
Yoshida, H., Ikadai, J., Shudo, M., Ohshita, J. & Kunai, A. (2005). Organometallics, 24, 156–162. CSD CrossRef CAS Google Scholar
Zhao, Z. J., He, B. R. & Tang, B. Z. (2015). Chem. Sci. 6, 5347–5365. CrossRef CAS Google Scholar
Ziller, J. W., Schaber, P. M. & Dinan, F. J. (1993). Acta Cryst. C49, 1430–1432. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.