metal-organic compounds
Hexaaquamanganese(II) bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia, and bSchool of Natural Sciences, Griffith University, Nathan, Qld 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the complex salt formed from the reaction of manganese(II) acetate with (4-aminophenyl)arsonic acid (p-arsanilic acid), [Mn(H2O)6](C6H7AsNO3)2·4H2O, the centrosymmetric Mn(H2O)6 has slightly distorted octahedral stereochemistry, with the two hydrogen (4-aminophenyl)arsonate anions and the four water molecules of solvation related by inversion. Extensive O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link all species, giving an overall three-dimensional supramolecular structure, which also has weak π–π ring interactions [minimum ring-centroid separation = 3.7304 (15) Å]. The structure is isotypic with that of the Mg salt.
Keywords: crystal structure; p-arsanilic acid; manganese(II) salts; hydrogen bonding.
CCDC reference: 1522310
Structure description
The arsenical (4-aminophenyl)arsonic acid (p-arsanilic acid) has biological significance as an anti-helminth in veterinary applications (Steverding, 2010) and its (Shimada, 1961; Nuttall & Hunter, 1996) has shown that it exists as a zwitterion. The hydrated monosodium salt had early usage as an anti-syphilitic (atoxyl) (Ehrlich & Bertheim, 1907). We have reported the of this salt (a dihydrate) and the NH4+ salt (Smith & Wermuth, 2014), together with the structures of the K, Rb and Cs salts (Smith & Wermuth, 2017a), as well as the alkaline-earth metal salts Mg, Ca, Sr and Ba (Smith & Wermuth, 2017b). Other single-metal complex structures are known, e.g. with Ag, Pb, Cd, Zn (Lesikar-Parrish et al., 2013), but no structures of single-metal first transition series compounds of hydrogen p-arsanilic acid have been reported. Our reaction of this acid with manganese(II) acetate in aqueous ethanol gave the title complex salt, [Mn(H2O)6](C6H7AsNO3)2·4H2O, and the structure is reported herein.
In the structure (Fig. 1), the cations exist as the common centrosymmetric octahedral [Mn(H2O)6]2+ species with the hydrogen p-arsanilate counter-anions and the water molecules of solvation (O4W, (O4Wi, and O5W, O5Wi) inversion related [symmetry code (i): −x + 1, −y + 1, −z + 1]. The Mn—O bond length range is 2.170 (2)–2.180 (2) Å. Structures having the [Mn(H2O)6]2+ cation are quite common, but no examples involving arsonate anions are known and phosphonate examples are few, e.g. hexaaquamanganese(II) bis(hydrogen t-butylphosphonate)·6H2O (Wang et al., 2009). The structure of the title compound is isotypic with that of the Mg hydrogen p-arsanilate complex, [Mg(H2O)6](C6H7AsNO3)2·4H2O (Smith & Wermuth, 2017b), with cell data: a = 15.1693 (6), b = 6.7367 (2), c = 12.9532 (4) Å, β = 108.033 (4), V = 1258.63 (7)°, Z = 4, P21/c.
In the crystal, extensive inter-species O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding interactions (Table 1) are present with the p-arsanilate anions linking the hydrogen-bonded layers of associated cations and water molecules across [010], generating a three-dimensional supramolecular structure (Fig. 2). Weak π–π associations are also present between inversion-related anions [minimum ring-centroid separation = 3.7304 (15) Å].
Synthesis and crystallization
The title compound was synthesized by heating together for 5 min, 1 mmol quantities of (4-aminophenyl)arsonic acid and manganese(II) acetate in 20 ml of 50% ethanol/water. Room temperature evaporation of the solution gave thin colourless crystal blocks suitable for the X-ray analysis.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1522310
https://doi.org/10.1107/S2414314616019854/bt4034sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616019854/bt4034Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).[Mn(H2O)6](C6H7AsNO3)2·4H2O | F(000) = 678 |
Mr = 667.19 | Dx = 1.739 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1801 reflections |
a = 15.2040 (9) Å | θ = 3.9–29.2° |
b = 6.7388 (3) Å | µ = 3.17 mm−1 |
c = 13.0699 (8) Å | T = 200 K |
β = 107.951 (7)° | Block, colourless |
V = 1273.91 (13) Å3 | 0.35 × 0.26 × 0.18 mm |
Z = 2 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2496 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2128 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.3° |
ω scans | h = −18→11 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −8→8 |
Tmin = 0.662, Tmax = 0.980 | l = −12→16 |
5155 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0288P)2 + 0.7443P] where P = (Fo2 + 2Fc2)/3 |
2496 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.32 e Å−3 |
13 restraints | Δρmin = −0.46 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
As1 | 0.22953 (2) | 0.74539 (4) | 0.59945 (2) | 0.0134 (1) | |
O11 | 0.29612 (12) | 0.8896 (3) | 0.69561 (14) | 0.0193 (6) | |
O12 | 0.26527 (12) | 0.5118 (3) | 0.60584 (15) | 0.0193 (5) | |
O13 | 0.23649 (13) | 0.8281 (3) | 0.47601 (15) | 0.0200 (6) | |
N4 | −0.17885 (16) | 0.7872 (3) | 0.5635 (2) | 0.0196 (7) | |
C1 | 0.10328 (18) | 0.7644 (3) | 0.5914 (2) | 0.0157 (8) | |
C2 | 0.07608 (19) | 0.7936 (4) | 0.6825 (2) | 0.0228 (8) | |
C3 | −0.01696 (19) | 0.7990 (4) | 0.6739 (2) | 0.0229 (9) | |
C4 | −0.08400 (18) | 0.7749 (4) | 0.5742 (2) | 0.0170 (8) | |
C5 | −0.05619 (19) | 0.7490 (4) | 0.4827 (2) | 0.0184 (8) | |
C6 | 0.03656 (18) | 0.7431 (3) | 0.4914 (2) | 0.0167 (8) | |
Mn1 | 0.50000 | 0.50000 | 0.50000 | 0.0164 (2) | |
O1W | 0.44009 (13) | 0.4411 (3) | 0.62823 (15) | 0.0203 (6) | |
O2W | 0.38051 (15) | 0.6723 (3) | 0.40765 (16) | 0.0293 (7) | |
O3W | 0.43599 (15) | 0.2291 (3) | 0.42193 (18) | 0.0281 (7) | |
O4W | 0.26434 (15) | 0.2457 (3) | 0.26621 (17) | 0.0244 (7) | |
O5W | 0.54204 (13) | 0.5174 (3) | 0.83471 (16) | 0.0228 (6) | |
H2 | 0.12130 | 0.80990 | 0.75080 | 0.0270* | |
H3 | −0.03530 | 0.81930 | 0.73630 | 0.0280* | |
H5 | −0.10130 | 0.73540 | 0.41410 | 0.0220* | |
H6 | 0.05500 | 0.72450 | 0.42890 | 0.0200* | |
H13 | 0.223 (2) | 0.948 (3) | 0.465 (3) | 0.0300* | |
H41 | −0.190 (2) | 0.764 (4) | 0.6237 (18) | 0.0230* | |
H42 | −0.2109 (19) | 0.704 (4) | 0.516 (2) | 0.0230* | |
H11W | 0.470 (2) | 0.474 (5) | 0.6899 (16) | 0.0300* | |
H12W | 0.3851 (13) | 0.467 (4) | 0.624 (3) | 0.0300* | |
H21W | 0.340 (2) | 0.724 (5) | 0.429 (3) | 0.0440* | |
H22W | 0.359 (2) | 0.674 (5) | 0.3397 (15) | 0.0440* | |
H31W | 0.469 (2) | 0.147 (4) | 0.402 (3) | 0.0420* | |
H32W | 0.3817 (16) | 0.226 (5) | 0.375 (2) | 0.0420* | |
H41W | 0.266 (2) | 0.164 (4) | 0.218 (2) | 0.0370* | |
H42W | 0.263 (2) | 0.359 (3) | 0.238 (2) | 0.0370* | |
H51W | 0.5943 (15) | 0.473 (4) | 0.833 (3) | 0.0340* | |
H52W | 0.546 (2) | 0.636 (3) | 0.858 (3) | 0.0340* |
U11 | U22 | U33 | U12 | U13 | U23 | |
As1 | 0.0117 (2) | 0.0153 (2) | 0.0139 (2) | 0.0010 (1) | 0.0052 (1) | 0.0003 (1) |
O11 | 0.0173 (10) | 0.0222 (10) | 0.0176 (9) | −0.0039 (8) | 0.0041 (8) | −0.0026 (8) |
O12 | 0.0162 (9) | 0.0169 (9) | 0.0253 (10) | 0.0029 (7) | 0.0073 (8) | 0.0013 (8) |
O13 | 0.0234 (10) | 0.0224 (10) | 0.0179 (10) | 0.0081 (8) | 0.0117 (8) | 0.0048 (9) |
N4 | 0.0141 (12) | 0.0240 (12) | 0.0221 (13) | −0.0006 (9) | 0.0077 (10) | −0.0002 (11) |
C1 | 0.0134 (13) | 0.0163 (13) | 0.0185 (14) | 0.0010 (10) | 0.0064 (11) | 0.0004 (11) |
C2 | 0.0191 (14) | 0.0349 (16) | 0.0136 (13) | 0.0012 (12) | 0.0041 (11) | −0.0003 (12) |
C3 | 0.0209 (15) | 0.0351 (16) | 0.0148 (14) | 0.0037 (12) | 0.0085 (12) | 0.0026 (12) |
C4 | 0.0153 (13) | 0.0149 (13) | 0.0230 (14) | 0.0012 (10) | 0.0091 (11) | 0.0019 (11) |
C5 | 0.0172 (14) | 0.0201 (14) | 0.0163 (13) | 0.0005 (10) | 0.0028 (11) | 0.0003 (11) |
C6 | 0.0174 (13) | 0.0196 (14) | 0.0159 (13) | 0.0013 (10) | 0.0091 (11) | −0.0014 (11) |
Mn1 | 0.0156 (3) | 0.0203 (3) | 0.0145 (3) | 0.0014 (2) | 0.0065 (2) | −0.0006 (2) |
O1W | 0.0139 (10) | 0.0322 (11) | 0.0164 (9) | 0.0032 (8) | 0.0070 (8) | −0.0001 (9) |
O2W | 0.0256 (12) | 0.0448 (13) | 0.0170 (10) | 0.0168 (10) | 0.0057 (9) | −0.0006 (10) |
O3W | 0.0240 (12) | 0.0276 (12) | 0.0313 (12) | 0.0008 (9) | 0.0064 (10) | −0.0085 (10) |
O4W | 0.0312 (12) | 0.0238 (11) | 0.0212 (11) | −0.0031 (9) | 0.0126 (9) | −0.0018 (9) |
O5W | 0.0203 (10) | 0.0216 (10) | 0.0269 (11) | 0.0001 (9) | 0.0079 (9) | −0.0045 (9) |
Mn1—O1W | 2.177 (2) | O4W—H41W | 0.84 (3) |
Mn1—O1Wi | 2.177 (2) | O4W—H42W | 0.85 (2) |
Mn1—O2W | 2.180 (2) | O5W—H51W | 0.86 (3) |
Mn1—O2Wi | 2.180 (2) | O5W—H52W | 0.85 (2) |
Mn1—O3W | 2.170 (2) | N4—C4 | 1.408 (4) |
Mn1—O3Wi | 2.170 (2) | N4—H41 | 0.87 (2) |
As1—O11 | 1.6627 (19) | N4—H42 | 0.87 (3) |
As1—O12 | 1.659 (2) | C1—C6 | 1.393 (4) |
As1—O13 | 1.7407 (19) | C1—C2 | 1.390 (4) |
As1—C1 | 1.894 (3) | C2—C3 | 1.385 (4) |
O13—H13 | 0.84 (2) | C3—C4 | 1.395 (4) |
O1W—H12W | 0.84 (2) | C4—C5 | 1.397 (4) |
O1W—H11W | 0.82 (2) | C5—C6 | 1.380 (4) |
O2W—H21W | 0.83 (3) | C2—H2 | 0.9500 |
O2W—H22W | 0.847 (19) | C3—H3 | 0.9500 |
O3W—H32W | 0.86 (3) | C5—H5 | 0.9500 |
O3W—H31W | 0.84 (3) | C6—H6 | 0.9500 |
O11—As1—O12 | 113.76 (10) | H21W—O2W—H22W | 105 (3) |
O11—As1—O13 | 108.46 (9) | Mn1—O3W—H32W | 123 (2) |
O11—As1—C1 | 111.90 (10) | H31W—O3W—H32W | 107 (3) |
O12—As1—O13 | 103.77 (9) | Mn1—O3W—H31W | 118 (2) |
O12—As1—C1 | 112.19 (9) | H41W—O4W—H42W | 105 (2) |
O13—As1—C1 | 106.08 (10) | H51W—O5W—H52W | 112 (3) |
O1Wi—Mn1—O3W | 91.42 (8) | C4—N4—H41 | 112 (2) |
O2Wi—Mn1—O3W | 89.35 (8) | H41—N4—H42 | 108 (3) |
O3W—Mn1—O3Wi | 180.00 | C4—N4—H42 | 112 (2) |
O1Wi—Mn1—O2Wi | 92.77 (8) | C2—C1—C6 | 119.7 (3) |
O1Wi—Mn1—O3Wi | 88.58 (8) | As1—C1—C6 | 118.5 (2) |
O2Wi—Mn1—O3Wi | 90.65 (8) | As1—C1—C2 | 121.7 (2) |
O1Wi—Mn1—O2W | 87.23 (8) | C1—C2—C3 | 120.0 (2) |
O1W—Mn1—O2W | 92.77 (8) | C2—C3—C4 | 120.5 (2) |
O1W—Mn1—O3W | 88.58 (8) | N4—C4—C3 | 121.2 (2) |
O1W—Mn1—O1Wi | 180.00 | C3—C4—C5 | 119.2 (3) |
O1W—Mn1—O2Wi | 87.23 (8) | N4—C4—C5 | 119.6 (2) |
O1W—Mn1—O3Wi | 91.42 (8) | C4—C5—C6 | 120.3 (2) |
O2W—Mn1—O3W | 90.65 (8) | C1—C6—C5 | 120.3 (2) |
O2W—Mn1—O2Wi | 180.00 | C3—C2—H2 | 120.00 |
O2W—Mn1—O3Wi | 89.35 (8) | C1—C2—H2 | 120.00 |
As1—O13—H13 | 113 (3) | C2—C3—H3 | 120.00 |
Mn1—O1W—H11W | 118 (2) | C4—C3—H3 | 120.00 |
H11W—O1W—H12W | 104 (3) | C6—C5—H5 | 120.00 |
Mn1—O1W—H12W | 124 (2) | C4—C5—H5 | 120.00 |
Mn1—O2W—H21W | 128 (3) | C1—C6—H6 | 120.00 |
Mn1—O2W—H22W | 125 (2) | C5—C6—H6 | 120.00 |
O11—As1—C1—C2 | −34.0 (2) | As1—C1—C6—C5 | 177.71 (18) |
O11—As1—C1—C6 | 147.69 (16) | C2—C1—C6—C5 | −0.6 (3) |
O12—As1—C1—C2 | 95.2 (2) | C1—C2—C3—C4 | 0.1 (4) |
O12—As1—C1—C6 | −83.06 (18) | C2—C3—C4—N4 | −177.7 (2) |
O13—As1—C1—C2 | −152.12 (19) | C2—C3—C4—C5 | −1.2 (4) |
O13—As1—C1—C6 | 29.59 (19) | N4—C4—C5—C6 | 177.9 (2) |
As1—C1—C2—C3 | −177.48 (19) | C3—C4—C5—C6 | 1.4 (4) |
C6—C1—C2—C3 | 0.8 (4) | C4—C5—C6—C1 | −0.5 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13···N4ii | 0.84 (2) | 1.90 (2) | 2.734 (3) | 174 (4) |
N4—H41···O4Wiii | 0.87 (2) | 2.09 (3) | 2.911 (3) | 158 (3) |
N4—H42···O12iii | 0.87 (3) | 2.13 (3) | 2.982 (3) | 169 (3) |
O1W—H11W···O5W | 0.82 (2) | 1.90 (2) | 2.715 (3) | 173 (3) |
O1W—H12W···O12 | 0.84 (2) | 1.79 (2) | 2.626 (3) | 176 (4) |
O2W—H21W···O13 | 0.83 (3) | 1.99 (3) | 2.811 (3) | 175 (4) |
O2W—H22W···O11iv | 0.85 (2) | 1.88 (2) | 2.704 (3) | 164 (3) |
O3W—H31W···O5Wv | 0.84 (3) | 1.96 (3) | 2.791 (3) | 171 (3) |
O3W—H32W···O4W | 0.86 (3) | 1.91 (3) | 2.773 (3) | 174 (3) |
O4W—H41W···O12v | 0.84 (3) | 1.88 (3) | 2.725 (3) | 177 (3) |
O4W—H42W···O11iv | 0.85 (2) | 1.90 (2) | 2.720 (3) | 164 (3) |
O5W—H51W···O11vi | 0.86 (3) | 1.90 (3) | 2.749 (3) | 170 (4) |
O5W—H52W···O1Wvii | 0.85 (2) | 2.07 (2) | 2.895 (3) | 164 (3) |
Symmetry codes: (ii) −x, −y+2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, −y+3/2, z−1/2; (v) x, −y+1/2, z−1/2; (vi) −x+1, y−1/2, −z+3/2; (vii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors acknowledge support from the Science and Engineering Faculty, Queensland University of Technology and Griffith University.
References
Ehrlich, P. & Bertheim, A. (1907). Berichte, pp. 3292–3297. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432. CAS Google Scholar
Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683. CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643. CrossRef CAS Web of Science Google Scholar
Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2017a). Acta Cryst. E73, Submitted. [wm5350] Google Scholar
Smith, G. & Wermuth, U. D. (2017b). Acta Cryst. C73, Accepted. doi: 10.1107/S2053229616019434 CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steverding, D. (2010). Parasites Vectors, 3:15, doi: 10.1186/1756-3305-3-15. Google Scholar
Wang, M., Ma, C.-B., Li, X.-Y., Chen, C.-N. & Liu, Q.-T. (2009). J. Mol. Struct. 920, 242–247. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.