metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Hexa­aqua­manganese(II) bis­­[hydrogen (4-amino­phen­yl)arsonate] tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia, and bSchool of Natural Sciences, Griffith University, Nathan, Qld 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 12 December 2016; accepted 12 December 2016; online 16 December 2016)

In the structure of the complex salt formed from the reaction of manganese(II) acetate with (4-amino­phen­yl)arsonic acid (p-arsanilic acid), [Mn(H2O)6](C6H7AsNO3)2·4H2O, the centrosymmetric Mn(H2O)6 coordination polyhedron has slightly distorted octa­hedral stereochemistry, with the two hydrogen (4-amino­phen­yl)arsonate anions and the four water mol­ecules of solvation related by inversion. Extensive O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link all species, giving an overall three-dimensional supra­molecular structure, which also has weak ππ ring inter­actions [minimum ring-centroid separation = 3.7304 (15) Å]. The structure is isotypic with that of the Mg salt.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The arsenical (4-amino­phen­yl)arsonic acid (p-arsanilic acid) has biological significance as an anti-helminth in veterinary applications (Steverding, 2010[Steverding, D. (2010). Parasites Vectors, 3:15, doi: 10.1186/1756-3305-3-15.]) and its crystal structure (Shimada, 1961[Shimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639-643.]; Nuttall & Hunter, 1996[Nuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681-1683.]) has shown that it exists as a zwitterion. The hydrated monosodium salt had early usage as an anti-syphilitic (atox­yl) (Ehrlich & Bertheim, 1907[Ehrlich, P. & Bertheim, A. (1907). Berichte, pp. 3292-3297.]). We have reported the crystal structure of this salt (a dihydrate) and the NH4+ salt (Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738-741.]), together with the structures of the K, Rb and Cs salts (Smith & Wermuth, 2017a[Smith, G. & Wermuth, U. D. (2017a). Acta Cryst. E73, Submitted. [wm5350]]), as well as the alkaline-earth metal salts Mg, Ca, Sr and Ba (Smith & Wermuth, 2017b[Smith, G. & Wermuth, U. D. (2017b). Acta Cryst. C73, Accepted. doi: 10.1107/S2053229616019434]). Other single-metal complex structures are known, e.g. with Ag, Pb, Cd, Zn (Lesikar-Parrish et al., 2013[Lesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424-432.]), but no structures of single-metal first transition series compounds of hydrogen p-arsanilic acid have been reported. Our reaction of this acid with manganese(II) acetate in aqueous ethanol gave the title complex salt, [Mn(H2O)6](C6H7AsNO3)2·4H2O, and the structure is reported herein.

In the structure (Fig. 1[link]), the cations exist as the common centrosymmetric octa­hedral [Mn(H2O)6]2+ species with the hydrogen p-arsanilate counter-anions and the water mol­ecules of solvation (O4W, (O4Wi, and O5W, O5Wi) inversion related [symmetry code (i): −x + 1, −y + 1, −z + 1]. The Mn—O bond length range is 2.170 (2)–2.180 (2) Å. Structures having the [Mn(H2O)6]2+ cation are quite common, but no examples involving arsonate anions are known and phospho­nate examples are few, e.g. hexa­aqua­manganese(II) bis­(hydrogen t-butyl­phospho­nate)·6H2O (Wang et al., 2009[Wang, M., Ma, C.-B., Li, X.-Y., Chen, C.-N. & Liu, Q.-T. (2009). J. Mol. Struct. 920, 242-247.]). The structure of the title compound is isotypic with that of the Mg hydrogen p-arsanilate complex, [Mg(H2O)6](C6H7AsNO3)2·4H2O (Smith & Wermuth, 2017b[Smith, G. & Wermuth, U. D. (2017b). Acta Cryst. C73, Accepted. doi: 10.1107/S2053229616019434]), with cell data: a = 15.1693 (6), b = 6.7367 (2), c = 12.9532 (4) Å, β = 108.033 (4), V = 1258.63 (7)°, Z = 4, space group P21/c.

[Figure 1]
Figure 1
The mol­ecular configuration and atom-numbering scheme for the centrosymmetric complex cation, the hydrogen p-arsanilate anion and the water mol­ecules of solvation (O4W and O5W) in the asymmetric unit of the title compound. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.] Non-H atoms are shown as 40% probability displacement ellipsoids and hydrogen-bonding inter­actions are shown as dashed lines

In the crystal, extensive inter-species O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding inter­actions (Table 1[link]) are present with the p-arsanilate anions linking the hydrogen-bonded layers of associated cations and water mol­ecules across [010], generating a three-dimensional supra­molecular structure (Fig. 2[link]). Weak ππ associations are also present between inversion-related anions [minimum ring-centroid separation = 3.7304 (15) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N4i 0.84 (2) 1.90 (2) 2.734 (3) 174 (4)
N4—H41⋯O4Wii 0.87 (2) 2.09 (3) 2.911 (3) 158 (3)
N4—H42⋯O12ii 0.87 (3) 2.13 (3) 2.982 (3) 169 (3)
O1W—H11W⋯O5W 0.82 (2) 1.90 (2) 2.715 (3) 173 (3)
O1W—H12W⋯O12 0.84 (2) 1.79 (2) 2.626 (3) 176 (4)
O2W—H21W⋯O13 0.83 (3) 1.99 (3) 2.811 (3) 175 (4)
O2W—H22W⋯O11iii 0.85 (2) 1.88 (2) 2.704 (3) 164 (3)
O3W—H31W⋯O5Wiv 0.84 (3) 1.96 (3) 2.791 (3) 171 (3)
O3W—H32W⋯O4W 0.86 (3) 1.91 (3) 2.773 (3) 174 (3)
O4W—H41W⋯O12iv 0.84 (3) 1.88 (3) 2.725 (3) 177 (3)
O4W—H42W⋯O11iii 0.85 (2) 1.90 (2) 2.720 (3) 164 (3)
O5W—H51W⋯O11v 0.86 (3) 1.90 (3) 2.749 (3) 170 (4)
O5W—H52W⋯O1Wvi 0.85 (2) 2.07 (2) 2.895 (3) 164 (3)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The packing in the unit cell, viewed along the c-axis direction, showing the associated [Mn(H2O)6]2+ cation layers linked peripherally across a by hydrogen bonds involving the anions and the water mol­ecules of solvation. Hydrogen-bonding inter­actions are shown as dashed lines and aromatic H atoms have been omitted.

Synthesis and crystallization

The title compound was synthesized by heating together for 5 min, 1 mmol qu­anti­ties of (4-amino­phen­yl)arsonic acid and manganese(II) acetate in 20 ml of 50% ethanol/water. Room temperature evaporation of the solution gave thin colourless crystal blocks suitable for the X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Mn(H2O)6](C6H7AsNO3)2·4H2O
Mr 667.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 15.2040 (9), 6.7388 (3), 13.0699 (8)
β (°) 107.951 (7)
V3) 1273.91 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.17
Crystal size (mm) 0.35 × 0.26 × 0.18
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.662, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 5155, 2496, 2128
Rint 0.025
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.02
No. of reflections 2496
No. of parameters 190
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Hexaaquamanganese(II) bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate top
Crystal data top
[Mn(H2O)6](C6H7AsNO3)2·4H2OF(000) = 678
Mr = 667.19Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1801 reflections
a = 15.2040 (9) Åθ = 3.9–29.2°
b = 6.7388 (3) ŵ = 3.17 mm1
c = 13.0699 (8) ÅT = 200 K
β = 107.951 (7)°Block, colourless
V = 1273.91 (13) Å30.35 × 0.26 × 0.18 mm
Z = 2
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2496 independent reflections
Radiation source: Enhance (Mo) X-ray source2128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1811
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 88
Tmin = 0.662, Tmax = 0.980l = 1216
5155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.7443P]
where P = (Fo2 + 2Fc2)/3
2496 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.32 e Å3
13 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.22953 (2)0.74539 (4)0.59945 (2)0.0134 (1)
O110.29612 (12)0.8896 (3)0.69561 (14)0.0193 (6)
O120.26527 (12)0.5118 (3)0.60584 (15)0.0193 (5)
O130.23649 (13)0.8281 (3)0.47601 (15)0.0200 (6)
N40.17885 (16)0.7872 (3)0.5635 (2)0.0196 (7)
C10.10328 (18)0.7644 (3)0.5914 (2)0.0157 (8)
C20.07608 (19)0.7936 (4)0.6825 (2)0.0228 (8)
C30.01696 (19)0.7990 (4)0.6739 (2)0.0229 (9)
C40.08400 (18)0.7749 (4)0.5742 (2)0.0170 (8)
C50.05619 (19)0.7490 (4)0.4827 (2)0.0184 (8)
C60.03656 (18)0.7431 (3)0.4914 (2)0.0167 (8)
Mn10.500000.500000.500000.0164 (2)
O1W0.44009 (13)0.4411 (3)0.62823 (15)0.0203 (6)
O2W0.38051 (15)0.6723 (3)0.40765 (16)0.0293 (7)
O3W0.43599 (15)0.2291 (3)0.42193 (18)0.0281 (7)
O4W0.26434 (15)0.2457 (3)0.26621 (17)0.0244 (7)
O5W0.54204 (13)0.5174 (3)0.83471 (16)0.0228 (6)
H20.121300.809900.750800.0270*
H30.035300.819300.736300.0280*
H50.101300.735400.414100.0220*
H60.055000.724500.428900.0200*
H130.223 (2)0.948 (3)0.465 (3)0.0300*
H410.190 (2)0.764 (4)0.6237 (18)0.0230*
H420.2109 (19)0.704 (4)0.516 (2)0.0230*
H11W0.470 (2)0.474 (5)0.6899 (16)0.0300*
H12W0.3851 (13)0.467 (4)0.624 (3)0.0300*
H21W0.340 (2)0.724 (5)0.429 (3)0.0440*
H22W0.359 (2)0.674 (5)0.3397 (15)0.0440*
H31W0.469 (2)0.147 (4)0.402 (3)0.0420*
H32W0.3817 (16)0.226 (5)0.375 (2)0.0420*
H41W0.266 (2)0.164 (4)0.218 (2)0.0370*
H42W0.263 (2)0.359 (3)0.238 (2)0.0370*
H51W0.5943 (15)0.473 (4)0.833 (3)0.0340*
H52W0.546 (2)0.636 (3)0.858 (3)0.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0117 (2)0.0153 (2)0.0139 (2)0.0010 (1)0.0052 (1)0.0003 (1)
O110.0173 (10)0.0222 (10)0.0176 (9)0.0039 (8)0.0041 (8)0.0026 (8)
O120.0162 (9)0.0169 (9)0.0253 (10)0.0029 (7)0.0073 (8)0.0013 (8)
O130.0234 (10)0.0224 (10)0.0179 (10)0.0081 (8)0.0117 (8)0.0048 (9)
N40.0141 (12)0.0240 (12)0.0221 (13)0.0006 (9)0.0077 (10)0.0002 (11)
C10.0134 (13)0.0163 (13)0.0185 (14)0.0010 (10)0.0064 (11)0.0004 (11)
C20.0191 (14)0.0349 (16)0.0136 (13)0.0012 (12)0.0041 (11)0.0003 (12)
C30.0209 (15)0.0351 (16)0.0148 (14)0.0037 (12)0.0085 (12)0.0026 (12)
C40.0153 (13)0.0149 (13)0.0230 (14)0.0012 (10)0.0091 (11)0.0019 (11)
C50.0172 (14)0.0201 (14)0.0163 (13)0.0005 (10)0.0028 (11)0.0003 (11)
C60.0174 (13)0.0196 (14)0.0159 (13)0.0013 (10)0.0091 (11)0.0014 (11)
Mn10.0156 (3)0.0203 (3)0.0145 (3)0.0014 (2)0.0065 (2)0.0006 (2)
O1W0.0139 (10)0.0322 (11)0.0164 (9)0.0032 (8)0.0070 (8)0.0001 (9)
O2W0.0256 (12)0.0448 (13)0.0170 (10)0.0168 (10)0.0057 (9)0.0006 (10)
O3W0.0240 (12)0.0276 (12)0.0313 (12)0.0008 (9)0.0064 (10)0.0085 (10)
O4W0.0312 (12)0.0238 (11)0.0212 (11)0.0031 (9)0.0126 (9)0.0018 (9)
O5W0.0203 (10)0.0216 (10)0.0269 (11)0.0001 (9)0.0079 (9)0.0045 (9)
Geometric parameters (Å, º) top
Mn1—O1W2.177 (2)O4W—H41W0.84 (3)
Mn1—O1Wi2.177 (2)O4W—H42W0.85 (2)
Mn1—O2W2.180 (2)O5W—H51W0.86 (3)
Mn1—O2Wi2.180 (2)O5W—H52W0.85 (2)
Mn1—O3W2.170 (2)N4—C41.408 (4)
Mn1—O3Wi2.170 (2)N4—H410.87 (2)
As1—O111.6627 (19)N4—H420.87 (3)
As1—O121.659 (2)C1—C61.393 (4)
As1—O131.7407 (19)C1—C21.390 (4)
As1—C11.894 (3)C2—C31.385 (4)
O13—H130.84 (2)C3—C41.395 (4)
O1W—H12W0.84 (2)C4—C51.397 (4)
O1W—H11W0.82 (2)C5—C61.380 (4)
O2W—H21W0.83 (3)C2—H20.9500
O2W—H22W0.847 (19)C3—H30.9500
O3W—H32W0.86 (3)C5—H50.9500
O3W—H31W0.84 (3)C6—H60.9500
O11—As1—O12113.76 (10)H21W—O2W—H22W105 (3)
O11—As1—O13108.46 (9)Mn1—O3W—H32W123 (2)
O11—As1—C1111.90 (10)H31W—O3W—H32W107 (3)
O12—As1—O13103.77 (9)Mn1—O3W—H31W118 (2)
O12—As1—C1112.19 (9)H41W—O4W—H42W105 (2)
O13—As1—C1106.08 (10)H51W—O5W—H52W112 (3)
O1Wi—Mn1—O3W91.42 (8)C4—N4—H41112 (2)
O2Wi—Mn1—O3W89.35 (8)H41—N4—H42108 (3)
O3W—Mn1—O3Wi180.00C4—N4—H42112 (2)
O1Wi—Mn1—O2Wi92.77 (8)C2—C1—C6119.7 (3)
O1Wi—Mn1—O3Wi88.58 (8)As1—C1—C6118.5 (2)
O2Wi—Mn1—O3Wi90.65 (8)As1—C1—C2121.7 (2)
O1Wi—Mn1—O2W87.23 (8)C1—C2—C3120.0 (2)
O1W—Mn1—O2W92.77 (8)C2—C3—C4120.5 (2)
O1W—Mn1—O3W88.58 (8)N4—C4—C3121.2 (2)
O1W—Mn1—O1Wi180.00C3—C4—C5119.2 (3)
O1W—Mn1—O2Wi87.23 (8)N4—C4—C5119.6 (2)
O1W—Mn1—O3Wi91.42 (8)C4—C5—C6120.3 (2)
O2W—Mn1—O3W90.65 (8)C1—C6—C5120.3 (2)
O2W—Mn1—O2Wi180.00C3—C2—H2120.00
O2W—Mn1—O3Wi89.35 (8)C1—C2—H2120.00
As1—O13—H13113 (3)C2—C3—H3120.00
Mn1—O1W—H11W118 (2)C4—C3—H3120.00
H11W—O1W—H12W104 (3)C6—C5—H5120.00
Mn1—O1W—H12W124 (2)C4—C5—H5120.00
Mn1—O2W—H21W128 (3)C1—C6—H6120.00
Mn1—O2W—H22W125 (2)C5—C6—H6120.00
O11—As1—C1—C234.0 (2)As1—C1—C6—C5177.71 (18)
O11—As1—C1—C6147.69 (16)C2—C1—C6—C50.6 (3)
O12—As1—C1—C295.2 (2)C1—C2—C3—C40.1 (4)
O12—As1—C1—C683.06 (18)C2—C3—C4—N4177.7 (2)
O13—As1—C1—C2152.12 (19)C2—C3—C4—C51.2 (4)
O13—As1—C1—C629.59 (19)N4—C4—C5—C6177.9 (2)
As1—C1—C2—C3177.48 (19)C3—C4—C5—C61.4 (4)
C6—C1—C2—C30.8 (4)C4—C5—C6—C10.5 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N4ii0.84 (2)1.90 (2)2.734 (3)174 (4)
N4—H41···O4Wiii0.87 (2)2.09 (3)2.911 (3)158 (3)
N4—H42···O12iii0.87 (3)2.13 (3)2.982 (3)169 (3)
O1W—H11W···O5W0.82 (2)1.90 (2)2.715 (3)173 (3)
O1W—H12W···O120.84 (2)1.79 (2)2.626 (3)176 (4)
O2W—H21W···O130.83 (3)1.99 (3)2.811 (3)175 (4)
O2W—H22W···O11iv0.85 (2)1.88 (2)2.704 (3)164 (3)
O3W—H31W···O5Wv0.84 (3)1.96 (3)2.791 (3)171 (3)
O3W—H32W···O4W0.86 (3)1.91 (3)2.773 (3)174 (3)
O4W—H41W···O12v0.84 (3)1.88 (3)2.725 (3)177 (3)
O4W—H42W···O11iv0.85 (2)1.90 (2)2.720 (3)164 (3)
O5W—H51W···O11vi0.86 (3)1.90 (3)2.749 (3)170 (4)
O5W—H52W···O1Wvii0.85 (2)2.07 (2)2.895 (3)164 (3)
Symmetry codes: (ii) x, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z1/2; (vi) x+1, y1/2, z+3/2; (vii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge support from the Science and Engineering Faculty, Queensland University of Technology and Griffith University.

References

First citationEhrlich, P. & Bertheim, A. (1907). Berichte, pp. 3292–3297.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLesikar-Parrish, L. A., Neilson, R. H. & Richards, A. F. (2013). J. Solid State Chem. 198, 424–432.  CAS Google Scholar
First citationNuttall, R. H. & Hunter, W. N. (1996). Acta Cryst. C52, 1681–1683.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, A. (1961). Bull. Chem. Soc. Jpn, 34, 639–643.  CrossRef CAS Web of Science Google Scholar
First citationSmith, G. & Wermuth, U. D. (2014). Acta Cryst. C70, 738–741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2017a). Acta Cryst. E73, Submitted. [wm5350]  Google Scholar
First citationSmith, G. & Wermuth, U. D. (2017b). Acta Cryst. C73, Accepted. doi: 10.1107/S2053229616019434  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteverding, D. (2010). Parasites Vectors, 3:15, doi: 10.1186/1756-3305-3-15.  Google Scholar
First citationWang, M., Ma, C.-B., Li, X.-Y., Chen, C.-N. & Liu, Q.-T. (2009). J. Mol. Struct. 920, 242–247.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds