organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,5-Bis(4-chloro­benzyl­­idene)cyclo­penta­none

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, SDM Institute of Technology, Ujire 574 240, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of P.G. Studies in Chemistry, Alva's College, Moodbidri 574 227, India, dDepartment of Chemistry, SDM Degree College (Autonomous), Ujire 574 240, India, eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, muneer@najah.edu

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 17 November 2016; accepted 22 November 2016; online 25 November 2016)

The title bis-chalcone compound, C19H14Cl2O, crystallizes with one half-mol­ecule in the asymmetric unit. The mol­ecule has crystallographic mirror symmetry with the C=O bond on the mirror plane. The mol­ecule adopts an E configuration about the central olefinic bonds. In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the [100] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The development of highly efficient non-linear optical crystals is extremely important for laser spectroscopy and laser processing. Bis(aryl­methyl­idene) cyclo­alkanones have been reported to exhibit promising non-linear optical properties (Yu et al., 2000[Yu, R. C., Yakimansky, A. V., Kothe, H., Voigt-Martin, I. G., Schollmeyer, D., Jansen, J., Zandbergen, H. & Tenkovtsev, A. V. (2000). Acta Cryst. A56, 436-450.]). In addition, these compounds are widely used as precursors for the synthesis of biologically active heterocycles (Guilford et al., 1999[Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415-5425.]). In view of the importance of bis-chalcones, we report herein on the synthesis and crystal structure of title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule has crystallographic mirror symmetry and adopts an E configuration about the central olefinic bonds, exhibiting a butterfly-shaped geometry. In the crystal, the mol­ecules are linked via weak C—H⋯O hydrogen bonds (Table 1[link]), forming supra­molecular chains propagating along the [100] direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H5⋯O1i 0.97 2.54 3.270 (3) 132
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operation x, [{3\over 2}] − y, z.

Synthesis and crystallization

A mixture of cyclo­penta­none (0.84 g, 0.01 mol) and 4-chloro­benzaldehyde (2.80 g, 0.02 mol) in 30 ml ethano­lic sodium hydroxide (0.1 mol) was stirred at 278–283 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol solution. Single crystals were grown from DMF in 86% yield by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H14Cl2O
Mr 329.20
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 296
a, b, c (Å) 6.1029 (4), 35.7084 (18), 7.2217 (6)
V3) 1573.79 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.29 × 0.27 × 0.25
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.888, 0.902
No. of measured, independent and observed [I > 2σ(I)] reflections 6328, 1583, 1063
Rint 0.034
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.04
No. of reflections 1583
No. of parameters 103
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(2E,5E)-2,5-Bis(4-chlorobenzylidene)cyclopentanone top
Crystal data top
C19H14Cl2ODx = 1.389 Mg m3
Mr = 329.20Melting point: 432 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1063 reflections
a = 6.1029 (4) Åθ = 2.9–26.1°
b = 35.7084 (18) ŵ = 0.41 mm1
c = 7.2217 (6) ÅT = 296 K
V = 1573.79 (18) Å3Rectangle, colorless
Z = 40.29 × 0.27 × 0.25 mm
F(000) = 680
Data collection top
Bruker APEXII
diffractometer
1583 independent reflections
Radiation source: Enraf Nonius FR5901063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 18.4 pixels mm-1θmax = 26.1°, θmin = 2.9°
CCD rotation images, thick slices scansh = 75
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
k = 4342
Tmin = 0.888, Tmax = 0.902l = 48
6328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.4484P]
where P = (Fo2 + 2Fc2)/3
1583 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78079 (13)0.52896 (2)1.04515 (13)0.0841 (4)
O10.1615 (3)0.750000.8758 (3)0.0438 (7)
C10.6686 (4)0.57327 (6)1.0207 (3)0.0482 (8)
C20.7870 (4)0.60368 (6)1.0815 (3)0.0475 (8)
C30.7013 (3)0.63916 (6)1.0602 (3)0.0425 (8)
C40.4964 (3)0.64510 (5)0.9785 (3)0.0347 (7)
C50.3827 (4)0.61340 (5)0.9195 (3)0.0422 (8)
C60.4653 (4)0.57775 (6)0.9402 (3)0.0509 (9)
C70.3980 (3)0.68207 (5)0.9492 (3)0.0341 (7)
C80.4771 (3)0.71622 (5)0.9844 (3)0.0324 (6)
C90.6917 (3)0.72845 (5)1.0656 (3)0.0411 (8)
C100.3465 (4)0.750000.9390 (4)0.0318 (9)
H10.781800.659701.101100.0510*
H20.385500.557100.900500.0610*
H30.246200.616400.864100.0510*
H40.258200.681700.898100.0410*
H50.812400.719000.991800.0490*
H70.923500.600301.136300.0570*
H80.706900.719001.190900.0490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0893 (6)0.0438 (4)0.1191 (8)0.0186 (3)0.0081 (5)0.0048 (4)
O10.0301 (10)0.0461 (12)0.0551 (16)0.00000.0091 (10)0.0000
C10.0577 (14)0.0395 (12)0.0474 (16)0.0083 (11)0.0044 (13)0.0044 (10)
C20.0426 (12)0.0511 (14)0.0489 (17)0.0045 (11)0.0060 (11)0.0071 (11)
C30.0422 (12)0.0399 (12)0.0454 (16)0.0008 (10)0.0064 (11)0.0028 (10)
C40.0356 (10)0.0376 (11)0.0308 (13)0.0018 (9)0.0028 (10)0.0018 (9)
C50.0413 (11)0.0429 (13)0.0425 (16)0.0042 (9)0.0035 (11)0.0005 (10)
C60.0593 (15)0.0366 (12)0.0567 (18)0.0069 (11)0.0052 (13)0.0023 (11)
C70.0293 (10)0.0406 (12)0.0323 (14)0.0015 (9)0.0019 (9)0.0012 (9)
C80.0313 (10)0.0388 (11)0.0272 (12)0.0001 (9)0.0010 (9)0.0027 (9)
C90.0364 (11)0.0400 (12)0.0469 (16)0.0004 (9)0.0127 (11)0.0026 (10)
C100.0272 (14)0.0429 (16)0.0254 (18)0.00000.0018 (13)0.0000
Geometric parameters (Å, º) top
Cl1—C11.733 (2)C8—C91.500 (3)
O1—C101.218 (3)C8—C101.483 (2)
C1—C21.376 (3)C9—C9i1.539 (3)
C1—C61.380 (3)C2—H70.9300
C2—C31.379 (3)C3—H10.9300
C3—C41.399 (3)C5—H30.9300
C4—C51.394 (3)C6—H20.9300
C4—C71.466 (3)C7—H40.9300
C5—C61.377 (3)C9—H50.9700
C7—C81.336 (3)C9—H80.9700
Cl1—C1—C2118.72 (18)C8—C10—C8i108.91 (19)
Cl1—C1—C6120.27 (17)C1—C2—H7120.00
C2—C1—C6121.0 (2)C3—C2—H7120.00
C1—C2—C3119.4 (2)C2—C3—H1119.00
C2—C3—C4121.69 (19)C4—C3—H1119.00
C3—C4—C5116.79 (18)C4—C5—H3119.00
C3—C4—C7124.32 (17)C6—C5—H3119.00
C5—C4—C7118.89 (18)C1—C6—H2121.00
C4—C5—C6122.3 (2)C5—C6—H2121.00
C1—C6—C5118.8 (2)C4—C7—H4115.00
C4—C7—C8130.29 (18)C8—C7—H4115.00
C7—C8—C9130.97 (17)C8—C9—H5110.00
C7—C8—C10120.42 (18)C8—C9—H8110.00
C9—C8—C10108.60 (15)H5—C9—H8109.00
C8—C9—C9i106.93 (15)C9i—C9—H5110.00
O1—C10—C8125.55 (11)C9i—C9—H8110.00
O1—C10—C8i125.55 (11)
Cl1—C1—C2—C3178.96 (17)C4—C5—C6—C10.6 (3)
C6—C1—C2—C30.5 (3)C4—C7—C8—C90.1 (4)
Cl1—C1—C6—C5178.73 (18)C4—C7—C8—C10178.9 (2)
C2—C1—C6—C50.7 (3)C7—C8—C9—C9i178.0 (2)
C1—C2—C3—C40.1 (3)C10—C8—C9—C9i1.1 (2)
C2—C3—C4—C50.0 (3)C7—C8—C10—O13.0 (4)
C2—C3—C4—C7179.0 (2)C7—C8—C10—C8i177.4 (2)
C3—C4—C5—C60.2 (3)C9—C8—C10—O1177.8 (3)
C7—C4—C5—C6179.3 (2)C9—C8—C10—C8i1.8 (3)
C3—C4—C7—C82.5 (4)C8—C9—C9i—C8i0.0 (2)
C5—C4—C7—C8176.4 (2)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H5···O1ii0.972.543.270 (3)132
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

The authors thank Alva's Education Foundation, Moodbidri, for proving research facilities.

References

First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415–5425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, R. C., Yakimansky, A. V., Kothe, H., Voigt-Martin, I. G., Schollmeyer, D., Jansen, J., Zandbergen, H. & Tenkovtsev, A. V. (2000). Acta Cryst. A56, 436–450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds