organic compounds
2,5-Bis(4-chlorobenzylidene)cyclopentanone
aDepartment of Chemistry, SDM Institute of Technology, Ujire 574 240, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of P.G. Studies in Chemistry, Alva's College, Moodbidri 574 227, India, dDepartment of Chemistry, SDM Degree College (Autonomous), Ujire 574 240, India, eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, muneer@najah.edu
The title bis-chalcone compound, C19H14Cl2O, crystallizes with one half-molecule in the The molecule has crystallographic mirror symmetry with the C=O bond on the mirror plane. The molecule adopts an E configuration about the central olefinic bonds. In the crystal, molecules are linked via weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the [100] direction.
Keywords: crystal structure; bis-chalcone; weak C—H⋯O hydrogen bonds.
CCDC reference: 1518584
Structure description
The development of highly efficient non-linear optical crystals is extremely important for laser spectroscopy and laser processing. Bis(arylmethylidene) cycloalkanones have been reported to exhibit promising non-linear optical properties (Yu et al., 2000). In addition, these compounds are widely used as precursors for the synthesis of biologically active heterocycles (Guilford et al., 1999). In view of the importance of bis-chalcones, we report herein on the synthesis and of title compound.
The molecular structure of the title compound is shown in Fig. 1. The molecule has crystallographic mirror symmetry and adopts an E configuration about the central olefinic bonds, exhibiting a butterfly-shaped geometry. In the crystal, the molecules are linked via weak C—H⋯O hydrogen bonds (Table 1), forming supramolecular chains propagating along the [100] direction.
Synthesis and crystallization
A mixture of cyclopentanone (0.84 g, 0.01 mol) and 4-chlorobenzaldehyde (2.80 g, 0.02 mol) in 30 ml ethanolic sodium hydroxide (0.1 mol) was stirred at 278–283 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol solution. Single crystals were grown from DMF in 86% yield by slow evaporation.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1518584
https://doi.org/10.1107/S2414314616018654/xu4018sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616018654/xu4018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616018654/xu4018Isup3.cml
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).C19H14Cl2O | Dx = 1.389 Mg m−3 |
Mr = 329.20 | Melting point: 432 K |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 1063 reflections |
a = 6.1029 (4) Å | θ = 2.9–26.1° |
b = 35.7084 (18) Å | µ = 0.41 mm−1 |
c = 7.2217 (6) Å | T = 296 K |
V = 1573.79 (18) Å3 | Rectangle, colorless |
Z = 4 | 0.29 × 0.27 × 0.25 mm |
F(000) = 680 |
Bruker APEXII diffractometer | 1583 independent reflections |
Radiation source: Enraf Nonius FR590 | 1063 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 18.4 pixels mm-1 | θmax = 26.1°, θmin = 2.9° |
CCD rotation images, thick slices scans | h = −7→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | k = −43→42 |
Tmin = 0.888, Tmax = 0.902 | l = −4→8 |
6328 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.4484P] where P = (Fo2 + 2Fc2)/3 |
1583 reflections | (Δ/σ)max = 0.001 |
103 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.78079 (13) | 0.52896 (2) | 1.04515 (13) | 0.0841 (4) | |
O1 | 0.1615 (3) | 0.75000 | 0.8758 (3) | 0.0438 (7) | |
C1 | 0.6686 (4) | 0.57327 (6) | 1.0207 (3) | 0.0482 (8) | |
C2 | 0.7870 (4) | 0.60368 (6) | 1.0815 (3) | 0.0475 (8) | |
C3 | 0.7013 (3) | 0.63916 (6) | 1.0602 (3) | 0.0425 (8) | |
C4 | 0.4964 (3) | 0.64510 (5) | 0.9785 (3) | 0.0347 (7) | |
C5 | 0.3827 (4) | 0.61340 (5) | 0.9195 (3) | 0.0422 (8) | |
C6 | 0.4653 (4) | 0.57775 (6) | 0.9402 (3) | 0.0509 (9) | |
C7 | 0.3980 (3) | 0.68207 (5) | 0.9492 (3) | 0.0341 (7) | |
C8 | 0.4771 (3) | 0.71622 (5) | 0.9844 (3) | 0.0324 (6) | |
C9 | 0.6917 (3) | 0.72845 (5) | 1.0656 (3) | 0.0411 (8) | |
C10 | 0.3465 (4) | 0.75000 | 0.9390 (4) | 0.0318 (9) | |
H1 | 0.78180 | 0.65970 | 1.10110 | 0.0510* | |
H2 | 0.38550 | 0.55710 | 0.90050 | 0.0610* | |
H3 | 0.24620 | 0.61640 | 0.86410 | 0.0510* | |
H4 | 0.25820 | 0.68170 | 0.89810 | 0.0410* | |
H5 | 0.81240 | 0.71900 | 0.99180 | 0.0490* | |
H7 | 0.92350 | 0.60030 | 1.13630 | 0.0570* | |
H8 | 0.70690 | 0.71900 | 1.19090 | 0.0490* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0893 (6) | 0.0438 (4) | 0.1191 (8) | 0.0186 (3) | −0.0081 (5) | 0.0048 (4) |
O1 | 0.0301 (10) | 0.0461 (12) | 0.0551 (16) | 0.0000 | −0.0091 (10) | 0.0000 |
C1 | 0.0577 (14) | 0.0395 (12) | 0.0474 (16) | 0.0083 (11) | 0.0044 (13) | 0.0044 (10) |
C2 | 0.0426 (12) | 0.0511 (14) | 0.0489 (17) | 0.0045 (11) | −0.0060 (11) | 0.0071 (11) |
C3 | 0.0422 (12) | 0.0399 (12) | 0.0454 (16) | −0.0008 (10) | −0.0064 (11) | 0.0028 (10) |
C4 | 0.0356 (10) | 0.0376 (11) | 0.0308 (13) | −0.0018 (9) | 0.0028 (10) | 0.0018 (9) |
C5 | 0.0413 (11) | 0.0429 (13) | 0.0425 (16) | −0.0042 (9) | −0.0035 (11) | −0.0005 (10) |
C6 | 0.0593 (15) | 0.0366 (12) | 0.0567 (18) | −0.0069 (11) | −0.0052 (13) | −0.0023 (11) |
C7 | 0.0293 (10) | 0.0406 (12) | 0.0323 (14) | −0.0015 (9) | −0.0019 (9) | 0.0012 (9) |
C8 | 0.0313 (10) | 0.0388 (11) | 0.0272 (12) | 0.0001 (9) | 0.0010 (9) | 0.0027 (9) |
C9 | 0.0364 (11) | 0.0400 (12) | 0.0469 (16) | −0.0004 (9) | −0.0127 (11) | 0.0026 (10) |
C10 | 0.0272 (14) | 0.0429 (16) | 0.0254 (18) | 0.0000 | 0.0018 (13) | 0.0000 |
Cl1—C1 | 1.733 (2) | C8—C9 | 1.500 (3) |
O1—C10 | 1.218 (3) | C8—C10 | 1.483 (2) |
C1—C2 | 1.376 (3) | C9—C9i | 1.539 (3) |
C1—C6 | 1.380 (3) | C2—H7 | 0.9300 |
C2—C3 | 1.379 (3) | C3—H1 | 0.9300 |
C3—C4 | 1.399 (3) | C5—H3 | 0.9300 |
C4—C5 | 1.394 (3) | C6—H2 | 0.9300 |
C4—C7 | 1.466 (3) | C7—H4 | 0.9300 |
C5—C6 | 1.377 (3) | C9—H5 | 0.9700 |
C7—C8 | 1.336 (3) | C9—H8 | 0.9700 |
Cl1—C1—C2 | 118.72 (18) | C8—C10—C8i | 108.91 (19) |
Cl1—C1—C6 | 120.27 (17) | C1—C2—H7 | 120.00 |
C2—C1—C6 | 121.0 (2) | C3—C2—H7 | 120.00 |
C1—C2—C3 | 119.4 (2) | C2—C3—H1 | 119.00 |
C2—C3—C4 | 121.69 (19) | C4—C3—H1 | 119.00 |
C3—C4—C5 | 116.79 (18) | C4—C5—H3 | 119.00 |
C3—C4—C7 | 124.32 (17) | C6—C5—H3 | 119.00 |
C5—C4—C7 | 118.89 (18) | C1—C6—H2 | 121.00 |
C4—C5—C6 | 122.3 (2) | C5—C6—H2 | 121.00 |
C1—C6—C5 | 118.8 (2) | C4—C7—H4 | 115.00 |
C4—C7—C8 | 130.29 (18) | C8—C7—H4 | 115.00 |
C7—C8—C9 | 130.97 (17) | C8—C9—H5 | 110.00 |
C7—C8—C10 | 120.42 (18) | C8—C9—H8 | 110.00 |
C9—C8—C10 | 108.60 (15) | H5—C9—H8 | 109.00 |
C8—C9—C9i | 106.93 (15) | C9i—C9—H5 | 110.00 |
O1—C10—C8 | 125.55 (11) | C9i—C9—H8 | 110.00 |
O1—C10—C8i | 125.55 (11) | ||
Cl1—C1—C2—C3 | 178.96 (17) | C4—C5—C6—C1 | −0.6 (3) |
C6—C1—C2—C3 | −0.5 (3) | C4—C7—C8—C9 | −0.1 (4) |
Cl1—C1—C6—C5 | −178.73 (18) | C4—C7—C8—C10 | 178.9 (2) |
C2—C1—C6—C5 | 0.7 (3) | C7—C8—C9—C9i | 178.0 (2) |
C1—C2—C3—C4 | 0.1 (3) | C10—C8—C9—C9i | −1.1 (2) |
C2—C3—C4—C5 | 0.0 (3) | C7—C8—C10—O1 | 3.0 (4) |
C2—C3—C4—C7 | −179.0 (2) | C7—C8—C10—C8i | −177.4 (2) |
C3—C4—C5—C6 | 0.2 (3) | C9—C8—C10—O1 | −177.8 (3) |
C7—C4—C5—C6 | 179.3 (2) | C9—C8—C10—C8i | 1.8 (3) |
C3—C4—C7—C8 | 2.5 (4) | C8—C9—C9i—C8i | 0.0 (2) |
C5—C4—C7—C8 | −176.4 (2) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H5···O1ii | 0.97 | 2.54 | 3.270 (3) | 132 |
Symmetry code: (ii) x+1, y, z. |
Acknowledgements
The authors thank Alva's Education Foundation, Moodbidri, for proving research facilities.
References
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Guilford, W. J., Shaw, K. J., Dallas, J. L., Koovakkat, S., Lee, W., Liang, A., Light, D. R., McCarrick, M. A., Whitlow, M., Ye, B. & Morrissey, M. M. (1999). J. Med. Chem. 42, 5415–5425. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, R. C., Yakimansky, A. V., Kothe, H., Voigt-Martin, I. G., Schollmeyer, D., Jansen, J., Zandbergen, H. & Tenkovtsev, A. V. (2000). Acta Cryst. A56, 436–450. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.