metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-[4-(Di­methyl­amino)­styr­yl]-1-methyl­pyridin-1-ium tetra­kis­[(Z)-4,4,4-tri­fluoro-3-oxo-1-(thio­phen-2-yl)but-1-en-1-olato]gadolinate(III) with an unknown amount of water as solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, Key Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: 1277436413@qq.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 27 September 2016; accepted 27 October 2016; online 1 November 2016)

In the complex anion of the title salt, (C16H19N2)[Gd(C8H4F3S)4], the GaIII cation is O,O′-chelated by four anionic 4,4,4-tri­fluoro-3-oxo-1-(thio­phen-2-yl)but-1-en-1-olate ligands in a distorted square-anti­prismatic geometry; the 4-[4-(di­methyl­amino)­styr­yl]-1-methyl­pyridin-1-ium cation is nearly planar, with a dihedral angle of 9.6 (5)° between the planes of the pyridine and benzene rings. In the crystal, the cations are linked with the complex anions via weak C—H⋯F and C—H⋯π inter­actions. Two of the four independent thio­phene rings are disordered over two sites; occupancies were refined to 0.662 (10):0.338 (10). The solvent water mol­ecules are highly disordered in a solvent-accessible void of 54 (3) Å3; the diffuse electron densities were removed from the data set using SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–16]. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent decades, the construction of lanthanide-based metal–organic complexes has attracted widespread attention due to their essential photophysical properties which have potential applications in luminescent materials (Cui et al., 2012[Cui, Y. J., Yue, Y. F., Qian, G. D. & Chen, B. L. (2012). Chem. Rev. 112, 1126-1162.]), optical amplification (Bradley & Pollnau, 2011[Bradley, J. D. B. & Pollnau, M. (2011). Laser Photonics Rev. 5, 368-403.]), magnetic materials, pressure and impact sensors, and biological systems. (Bünzli & Eliseeva, 2013[Bünzli, J. G. & Eliseeva, S. V. (2013). Chem. Sci. 4, 1939-1949.]). According to these excellent properties, a new pyridinium complex consisting of p-amino­styryl-pyridinium cation and a gadolinium(III) complex anion was synthesized by an ionic exchange reaction.

As shown in Fig. 1[link], the asymmetric unit of the title complex contains one GdIII cation, four bidentate TTA (4,4,4-tri­fluoro-1,3-dioxo-1-(thio­phen-2-yl)butan-2-ide) anions and one (E)-4-(4-(di­methyl­amino)­styr­yl)-1-methyl­pyridin-1-ium cation. The central GdIII cation is coordinated by eight oxygen atoms from four bidentate TTA anions, which presents typical O,O-chelates. The coordination environment of the GdIII cation is shown in Fig. 2. The Gd—O bond lengths range from 2.366 (5) to 2.419 (4)°, which deviate from the average of 2.385°. Eight different bond lengths generate a distorted square anti­prism with the two square planes comprising atoms (O1,O2,O8,O7) and (O3,O4,O6,O5). The dihedral angle between these planes is 0.269 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, showing 30% probability displacement ellipsoids. The H atoms have been omitted for clarity.

Synthesis and crystallization

1,4-Di­methyl­pyridinium iodide and (E)-4-(4-(di­methyl­amino) styr­yl)-1-methyl­pyridin-1-ium iodide were prepared using established literature methods (Zhao et al., 1995a[Zhao, C.-F., He, G.-S., Bhawalkar, J. D., Park, C. K. & Prasad, P. N. (1995a). Chem. Mater. 7, 1979-1983.],b[Zhao, C.-F., Park, C. K., Prasad, P. N., Zhang, Y., Ghosal, S. & Burzynski, R. (1995b). Chem. Mater. 7, 1237-1242.]). For the preparation of the title complex, Gd(NO3)3·6H2O (0.45 g, 1 mmol) dissolved in ethanol solution was added dropwise into a 4,4,4-tri­fluoro-1-(thio­phen-2-yl)butane-1,3-dione (HTTA, 0.89 g, 4 mmol) and aqueous NaOH (0.16 g, 4 mmol) solution that reacted to form the inter­mediate 4,4,4-tri­fluoro-1,3-dioxo-1-(thio­phen-2-yl)butan-2-ide (TTA), then (E)-4-[4-(di­methyl­amino)styr­yl]-1-methyl­pyridin-1-ium iodide (0.37 g, 1 mmol) was added into the solution. After refluxing for half an hour, the precipitate was filtered off and recrystallized from ethanol solution. Single crystals of the title complex were gained by slow evaporation of methanol covered with aceto­nitrile at room temperature. 1H NMR: (400 MHz, CD3COCD3-d6), (p.p.m.): 10.30 (d, 2H), 8.90 (d,2H), 8.14 (d, 1H), 7.68 (d, 2H), 7.43 (d, 1H), 7.25 (d, 4H), 6.85 (d, 2H),6.73 (d, 4H), 6.67–6.60 (m, 4H), 5.69 (s, 4H), 4.05 (s, 3H), 3.11 (s, 6H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The residual solvent water mol­ecules were highly disordered and could not be found and refined. The diffuse electron densities of these residual solvent mol­ecules were removed from the data set by the SQUEEZE routine of PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) software, and then the generated data were used to further refine the structure.

Table 1
Experimental details

Crystal data
Chemical formula (C16H19N2)[Gd(C8H4F3S)4]
Mr 1281.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 10.500 (5), 21.888 (5), 23.348 (5)
β (°) 101.145 (5)
V3) 5265 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.51
Crystal size (mm) 0.24 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction ψ scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.713, 0.742
No. of measured, independent and observed [I > 2σ(I)] reflections 37288, 9781, 7812
Rint 0.056
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.143, 1.09
No. of reflections 9781
No. of parameters 770
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.85, −1.42
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-4-[4-(Dimethylamino)styryl]-1-methylpyridin-1-ium tetrakis[(Z)-4,4,4-trifluoro-3-oxo-1-(thiophen-2-yl)but-1-en-1-olato]gadolinate(III) top
Crystal data top
(C16H19N2)[Gd(C8H4F3S)4]F(000) = 2548
Mr = 1281.27Dx = 1.616 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 9929 reflections
a = 10.500 (5) Åθ = 2.2–24.3°
b = 21.888 (5) ŵ = 1.51 mm1
c = 23.348 (5) ÅT = 298 K
β = 101.145 (5)°Block, red
V = 5265 (3) Å30.24 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
9781 independent reflections
Radiation source: fine-focus sealed tube7812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
phi and ω scansθmax = 25.5°, θmin = 1.3°
Absorption correction: ψ scan
(SADABS; Bruker, 2007)
h = 1112
Tmin = 0.713, Tmax = 0.742k = 2526
37288 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0384P)2 + 26.1086P]
where P = (Fo2 + 2Fc2)/3
9781 reflections(Δ/σ)max = 0.020
770 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.5249 (17)0.6856 (12)0.4449 (8)0.090 (3)0.662 (10)
C410.494 (7)0.6822 (17)0.512 (3)0.086 (10)0.662 (10)
H410.41140.67580.51940.103*0.662 (10)
C420.604 (9)0.690 (3)0.555 (4)0.080 (12)0.662 (10)
H420.60570.69010.59530.096*0.662 (10)
C430.717 (5)0.697 (3)0.528 (2)0.078 (14)0.662 (10)
H430.80160.70270.54830.094*0.662 (10)
C440.68 (2)0.694 (9)0.467 (10)0.06 (2)0.662 (10)
S2'0.748 (3)0.7062 (16)0.5382 (12)0.073 (5)0.338 (10)
C42'0.509 (13)0.706 (3)0.511 (6)0.09 (2)0.338 (10)
H42'0.42430.70950.51730.105*0.338 (10)
C41'0.622 (19)0.709 (5)0.556 (9)0.08 (2)0.338 (10)
H41'0.61640.71280.59550.099*0.338 (10)
C43'0.547 (11)0.697 (7)0.454 (5)0.10 (4)0.338 (10)
H43'0.49210.69100.41810.114*0.338 (10)
C44'0.70 (4)0.698 (18)0.47 (2)0.06 (5)0.338 (10)
S40.311 (2)0.7632 (9)0.2735 (9)0.077 (2)0.662 (10)
C330.181 (8)0.808 (3)0.249 (3)0.082 (17)0.662 (10)
H330.10550.80570.26400.098*0.662 (10)
C340.198 (6)0.849 (3)0.2038 (19)0.082 (11)0.662 (10)
H340.13380.87530.18550.099*0.662 (10)
C350.326 (9)0.844 (4)0.190 (4)0.08 (3)0.662 (10)
H350.35860.86640.16200.098*0.662 (10)
C360.392 (9)0.796 (4)0.226 (4)0.06 (3)0.662 (10)
S4'0.308 (6)0.852 (2)0.1931 (19)0.079 (6)0.338 (10)
C34'0.183 (18)0.791 (7)0.263 (7)0.08 (2)0.338 (10)
H34'0.12020.77460.28210.093*0.338 (10)
C33'0.181 (11)0.842 (5)0.224 (3)0.07 (2)0.338 (10)
H33'0.10990.86830.21670.087*0.338 (10)
C35'0.319 (14)0.772 (6)0.264 (6)0.09 (5)0.338 (10)
H35'0.35380.74180.29050.109*0.338 (10)
C36'0.40 (2)0.795 (8)0.228 (8)0.07 (6)0.338 (10)
C10.2577 (12)0.3626 (6)0.0335 (6)0.123 (5)
H1A0.23290.34720.00120.184*
H1B0.35070.36470.02780.184*
H1C0.22550.33590.06560.184*
C20.2884 (11)0.4743 (6)0.0322 (5)0.110 (4)
H2A0.28060.50070.06550.166*
H2B0.37630.46020.02140.166*
H2C0.26530.49650.00020.166*
C30.0744 (11)0.4306 (5)0.0667 (4)0.080 (3)
C40.0107 (12)0.3808 (5)0.0796 (5)0.103 (4)
H40.02090.34120.07330.123*
C50.1423 (12)0.3905 (5)0.1016 (5)0.103 (4)
H50.19520.35630.11050.123*
C60.1986 (11)0.4468 (5)0.1111 (4)0.081 (3)
C70.1139 (11)0.4955 (5)0.0988 (4)0.084 (3)
H70.14700.53480.10550.101*
C80.0152 (11)0.4888 (5)0.0772 (4)0.082 (3)
H80.06650.52360.06920.099*
C90.3388 (12)0.4575 (5)0.1357 (4)0.087 (3)
H90.36440.49760.14490.104*
C100.4279 (12)0.4159 (5)0.1454 (4)0.087 (3)
H100.40430.37540.13730.104*
C110.5645 (11)0.4299 (4)0.1686 (4)0.075 (3)
C120.6550 (12)0.3826 (4)0.1725 (4)0.088 (3)
H120.62700.34330.16130.105*
C130.7826 (11)0.3931 (4)0.1923 (4)0.083 (3)
H130.84120.36090.19520.100*
C140.7437 (11)0.4988 (4)0.2029 (4)0.081 (3)
H140.77500.53830.21070.097*
C150.6147 (10)0.4878 (4)0.1862 (4)0.077 (3)
H150.55710.52000.18640.092*
C160.9678 (10)0.4600 (5)0.2285 (5)0.099 (3)
H16A0.98790.45890.27040.148*
H16B0.99150.49920.21520.148*
H16C1.01540.42860.21310.148*
C171.1792 (11)0.4745 (5)0.4335 (5)0.095 (3)
H171.26780.46660.44270.115*
C181.0904 (13)0.4435 (5)0.4554 (4)0.092 (3)
H181.11320.41240.48250.111*
C190.9631 (8)0.4601 (3)0.4355 (3)0.0549 (19)
H190.89100.44160.44570.066*
C200.9601 (8)0.5110 (3)0.3961 (3)0.0546 (19)
C210.8490 (7)0.5459 (3)0.3634 (3)0.0472 (17)
C220.7215 (7)0.5298 (3)0.3675 (3)0.0545 (19)
H220.70910.50170.39570.065*
C230.6151 (7)0.5539 (3)0.3316 (3)0.0532 (18)
C240.4809 (9)0.5292 (5)0.3360 (4)0.073 (3)
C251.3133 (8)0.6296 (4)0.1907 (5)0.073 (3)
H251.40070.62200.20530.087*
C261.2682 (10)0.6534 (5)0.1378 (5)0.084 (3)
H261.32330.66460.11280.101*
C271.1305 (7)0.6606 (3)0.1221 (4)0.060 (2)
H271.08400.67530.08680.071*
C281.0779 (7)0.6407 (3)0.1718 (3)0.0489 (17)
C290.9424 (6)0.6419 (3)0.1792 (3)0.0432 (15)
C300.8405 (7)0.6459 (4)0.1295 (3)0.0506 (18)
H300.86080.64860.09250.061*
C310.7144 (7)0.6457 (3)0.1349 (3)0.0474 (17)
C320.6096 (8)0.6440 (5)0.0784 (3)0.066 (2)
C370.5247 (8)0.7746 (3)0.2253 (3)0.0493 (17)
C380.5972 (8)0.8030 (4)0.1872 (3)0.057 (2)
H380.55450.82920.15840.069*
C390.7265 (8)0.7933 (3)0.1912 (3)0.0536 (19)
C400.7969 (11)0.8301 (5)0.1504 (5)0.086 (3)
C450.7666 (7)0.6981 (3)0.4222 (3)0.0520 (18)
C460.9019 (7)0.7033 (4)0.4371 (3)0.0543 (19)
H460.94160.70060.47620.065*
C470.9790 (7)0.7124 (3)0.3960 (3)0.0485 (17)
C481.1227 (9)0.7182 (5)0.4182 (4)0.071 (2)
F10.4821 (6)0.4883 (3)0.3774 (3)0.130 (3)
F20.4023 (5)0.5737 (3)0.3442 (3)0.108 (2)
F30.4230 (6)0.5022 (3)0.2871 (3)0.115 (2)
F41.1657 (6)0.6989 (5)0.4695 (3)0.175 (4)
F51.1919 (6)0.6924 (5)0.3847 (4)0.164 (4)
F61.1618 (8)0.7730 (4)0.4169 (5)0.193 (5)
F70.8944 (7)0.7999 (3)0.1369 (3)0.128 (3)
F80.8487 (10)0.8796 (4)0.1753 (4)0.173 (4)
F90.7234 (8)0.8450 (4)0.1012 (3)0.159 (4)
F100.5265 (6)0.5973 (3)0.0786 (2)0.0957 (18)
F110.5367 (5)0.6943 (3)0.0729 (2)0.0931 (17)
F120.6568 (5)0.6376 (4)0.0298 (2)0.110 (2)
Gd10.76013 (3)0.672150 (16)0.279170 (14)0.03944 (11)
N10.2036 (9)0.4232 (4)0.0462 (4)0.095 (3)
N20.8261 (8)0.4500 (3)0.2079 (3)0.074 (2)
O10.6103 (4)0.5937 (2)0.2912 (2)0.0522 (12)
O20.8757 (5)0.5884 (2)0.3318 (2)0.0559 (13)
O30.7060 (5)0.6942 (3)0.3707 (2)0.0621 (15)
O40.9438 (5)0.7172 (2)0.3414 (2)0.0561 (13)
O50.5705 (4)0.7338 (2)0.2614 (2)0.0519 (12)
O60.8026 (5)0.7606 (2)0.2270 (2)0.0491 (12)
O70.6642 (4)0.6448 (2)0.17983 (18)0.0455 (11)
O80.9229 (4)0.6357 (2)0.2300 (2)0.0509 (12)
S11.1113 (2)0.52987 (14)0.38679 (13)0.0916 (8)
S31.1934 (2)0.61484 (13)0.22812 (11)0.0787 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.066 (4)0.143 (9)0.064 (4)0.006 (4)0.022 (3)0.012 (4)
C410.084 (17)0.11 (3)0.068 (13)0.00 (2)0.027 (12)0.01 (2)
C420.08 (2)0.10 (4)0.059 (13)0.01 (3)0.025 (14)0.00 (3)
C430.08 (3)0.09 (2)0.07 (2)0.005 (17)0.019 (17)0.004 (15)
C440.06 (4)0.09 (7)0.05 (3)0.01 (4)0.02 (3)0.00 (4)
S2'0.078 (11)0.088 (9)0.057 (7)0.005 (7)0.024 (8)0.002 (7)
C42'0.08 (4)0.10 (6)0.08 (3)0.00 (4)0.03 (3)0.01 (5)
C41'0.09 (5)0.10 (6)0.07 (3)0.00 (5)0.03 (3)0.00 (5)
C43'0.10 (8)0.12 (6)0.07 (6)0.02 (5)0.04 (5)0.01 (5)
C44'0.06 (8)0.07 (7)0.06 (8)0.01 (6)0.01 (4)0.00 (4)
S40.063 (4)0.097 (5)0.080 (4)0.019 (4)0.032 (4)0.007 (5)
C330.065 (14)0.09 (5)0.09 (5)0.02 (3)0.01 (3)0.01 (2)
C340.07 (2)0.089 (18)0.09 (3)0.025 (14)0.007 (19)0.02 (2)
C350.06 (4)0.08 (3)0.10 (3)0.017 (18)0.002 (18)0.011 (16)
C360.05 (4)0.07 (4)0.07 (4)0.02 (3)0.01 (3)0.02 (3)
S4'0.060 (11)0.082 (11)0.088 (11)0.013 (12)0.000 (8)0.002 (11)
C34'0.07 (3)0.08 (6)0.08 (6)0.02 (4)0.01 (3)0.00 (3)
C33'0.06 (3)0.08 (4)0.07 (6)0.03 (4)0.01 (4)0.01 (4)
C35'0.07 (5)0.12 (7)0.09 (7)0.02 (4)0.03 (4)0.01 (4)
C36'0.07 (9)0.08 (9)0.06 (7)0.01 (6)0.00 (6)0.01 (5)
C10.116 (10)0.117 (10)0.120 (10)0.017 (8)0.016 (8)0.040 (8)
C20.104 (9)0.125 (10)0.094 (8)0.030 (8)0.002 (7)0.000 (7)
C30.095 (8)0.070 (6)0.072 (6)0.009 (6)0.011 (5)0.013 (5)
C40.103 (9)0.061 (6)0.140 (10)0.005 (6)0.009 (8)0.021 (6)
C50.095 (9)0.074 (7)0.135 (10)0.024 (6)0.013 (7)0.009 (7)
C60.092 (8)0.073 (7)0.078 (6)0.004 (6)0.014 (5)0.005 (5)
C70.100 (8)0.067 (6)0.083 (7)0.004 (6)0.013 (6)0.009 (5)
C80.100 (8)0.072 (6)0.072 (6)0.021 (6)0.010 (6)0.006 (5)
C90.122 (9)0.057 (6)0.085 (7)0.006 (6)0.031 (6)0.006 (5)
C100.119 (9)0.060 (6)0.085 (7)0.011 (6)0.031 (6)0.005 (5)
C110.098 (8)0.073 (6)0.055 (5)0.011 (6)0.018 (5)0.005 (4)
C120.121 (9)0.056 (6)0.075 (6)0.011 (6)0.005 (6)0.005 (5)
C130.111 (9)0.062 (6)0.068 (6)0.011 (6)0.004 (6)0.011 (5)
C140.119 (9)0.049 (5)0.083 (6)0.013 (6)0.039 (6)0.026 (4)
C150.091 (7)0.058 (6)0.089 (7)0.008 (5)0.036 (6)0.004 (5)
C160.094 (8)0.097 (8)0.096 (8)0.007 (7)0.002 (6)0.006 (6)
C170.073 (7)0.115 (9)0.088 (7)0.051 (7)0.011 (6)0.007 (7)
C180.126 (10)0.074 (7)0.073 (6)0.039 (7)0.011 (7)0.019 (5)
C190.062 (5)0.051 (4)0.049 (4)0.004 (4)0.004 (4)0.011 (3)
C200.064 (5)0.047 (4)0.052 (4)0.010 (4)0.007 (4)0.003 (3)
C210.052 (4)0.039 (4)0.052 (4)0.002 (3)0.012 (3)0.004 (3)
C220.055 (5)0.052 (5)0.058 (4)0.000 (4)0.013 (4)0.015 (4)
C230.052 (5)0.054 (5)0.054 (4)0.008 (4)0.013 (4)0.002 (4)
C240.049 (5)0.091 (7)0.083 (6)0.006 (5)0.022 (5)0.017 (6)
C250.034 (4)0.081 (6)0.109 (8)0.004 (4)0.029 (5)0.024 (6)
C260.072 (7)0.094 (8)0.099 (8)0.013 (5)0.045 (6)0.010 (6)
C270.042 (4)0.059 (5)0.087 (6)0.000 (4)0.035 (4)0.005 (4)
C280.036 (4)0.050 (4)0.062 (4)0.004 (3)0.014 (3)0.005 (4)
C290.040 (4)0.040 (4)0.051 (4)0.006 (3)0.013 (3)0.002 (3)
C300.043 (4)0.071 (5)0.042 (4)0.009 (4)0.020 (3)0.001 (3)
C310.057 (4)0.062 (4)0.025 (3)0.020 (4)0.013 (3)0.011 (3)
C320.055 (5)0.094 (7)0.047 (4)0.022 (5)0.003 (4)0.001 (4)
C370.048 (5)0.045 (4)0.053 (4)0.007 (4)0.004 (3)0.007 (3)
C380.053 (5)0.057 (5)0.060 (5)0.013 (4)0.007 (4)0.017 (4)
C390.069 (5)0.049 (4)0.045 (4)0.005 (4)0.014 (4)0.013 (3)
C400.101 (8)0.080 (7)0.087 (7)0.036 (7)0.042 (6)0.040 (6)
C450.054 (5)0.049 (4)0.052 (4)0.006 (4)0.006 (4)0.006 (3)
C460.053 (5)0.066 (5)0.041 (4)0.000 (4)0.002 (3)0.003 (3)
C470.055 (4)0.045 (4)0.043 (4)0.011 (3)0.004 (3)0.005 (3)
C480.056 (5)0.090 (7)0.065 (5)0.020 (5)0.009 (4)0.008 (5)
F10.083 (4)0.160 (6)0.148 (6)0.026 (4)0.028 (4)0.086 (5)
F20.066 (4)0.115 (5)0.153 (6)0.001 (3)0.046 (4)0.003 (4)
F30.087 (4)0.131 (6)0.125 (5)0.054 (4)0.014 (4)0.018 (4)
F40.058 (4)0.350 (13)0.104 (5)0.025 (5)0.014 (3)0.093 (7)
F50.058 (4)0.296 (12)0.135 (6)0.004 (5)0.012 (4)0.064 (7)
F60.102 (6)0.124 (7)0.323 (14)0.062 (5)0.036 (7)0.040 (8)
F70.132 (6)0.137 (6)0.139 (6)0.033 (5)0.086 (5)0.067 (5)
F80.268 (11)0.096 (5)0.188 (8)0.078 (6)0.125 (8)0.002 (5)
F90.133 (6)0.246 (10)0.106 (5)0.033 (6)0.040 (5)0.113 (6)
F100.086 (4)0.109 (4)0.079 (4)0.017 (4)0.017 (3)0.011 (3)
F110.087 (4)0.109 (4)0.072 (3)0.032 (3)0.013 (3)0.006 (3)
F120.084 (4)0.202 (7)0.043 (3)0.021 (4)0.008 (3)0.012 (3)
Gd10.03767 (18)0.04414 (19)0.03731 (17)0.00276 (16)0.00926 (12)0.00810 (15)
N10.087 (6)0.085 (6)0.104 (7)0.003 (5)0.006 (5)0.013 (5)
N20.108 (7)0.063 (5)0.046 (4)0.012 (5)0.000 (4)0.007 (3)
O10.041 (3)0.058 (3)0.055 (3)0.005 (2)0.005 (2)0.014 (2)
O20.045 (3)0.058 (3)0.063 (3)0.003 (2)0.008 (2)0.026 (3)
O30.045 (3)0.102 (4)0.039 (3)0.005 (3)0.007 (2)0.001 (3)
O40.052 (3)0.071 (3)0.045 (3)0.017 (3)0.009 (2)0.011 (2)
O50.045 (3)0.061 (3)0.055 (3)0.019 (2)0.021 (2)0.017 (2)
O60.047 (3)0.049 (3)0.053 (3)0.002 (2)0.016 (2)0.013 (2)
O70.033 (2)0.068 (3)0.037 (2)0.008 (2)0.0113 (19)0.000 (2)
O80.039 (3)0.066 (3)0.050 (3)0.015 (2)0.013 (2)0.011 (2)
S10.0607 (15)0.105 (2)0.107 (2)0.0156 (14)0.0109 (14)0.0301 (16)
S30.0507 (12)0.0977 (19)0.0861 (16)0.0040 (12)0.0097 (11)0.0017 (14)
Geometric parameters (Å, º) top
S2—C441.6 (2)C14—H140.9300
S2—C411.65 (6)C15—H150.9300
C41—C421.40 (12)C16—N21.489 (12)
C41—H410.9300C16—H16A0.9600
C42—C431.46 (11)C16—H16B0.9600
C42—H420.9300C16—H16C0.9600
C43—C441.4 (2)C17—C181.332 (15)
C43—H430.9300C17—S11.693 (10)
C44—C451.51 (19)C17—H170.9300
S2'—C41'1.5 (2)C18—C191.377 (13)
S2'—C44'1.7 (5)C18—H180.9300
C42'—C41'1.4 (2)C19—C201.441 (10)
C42'—C43'1.48 (17)C19—H190.9300
C42'—H42'0.9300C20—C211.477 (10)
C41'—H41'0.9300C20—S11.694 (8)
C43'—C44'1.5 (4)C21—O21.253 (8)
C43'—H43'0.9300C21—C221.405 (10)
C44'—C451.4 (4)C22—C231.366 (10)
S4—C361.68 (11)C22—H220.9300
S4—C331.68 (7)C23—O11.276 (8)
C33—C341.42 (6)C23—C241.532 (11)
C33—H330.9300C24—F11.314 (10)
C34—C351.45 (11)C24—F21.316 (11)
C34—H340.9300C24—F31.323 (11)
C35—C361.44 (12)C25—C261.339 (13)
C35—H350.9300C25—S31.697 (9)
C36—C371.48 (8)C25—H250.9300
S4'—C33'1.65 (10)C26—C271.430 (12)
S4'—C36'1.66 (17)C26—H260.9300
C34'—C33'1.44 (12)C27—C281.446 (10)
C34'—C35'1.5 (2)C27—H270.9300
C34'—H34'0.9300C28—C291.467 (9)
C33'—H33'0.9300C28—S31.704 (8)
C35'—C36'1.4 (3)C29—O81.249 (8)
C35'—H35'0.9300C29—C301.421 (9)
C36'—C371.43 (18)C30—C311.354 (10)
C1—N11.451 (13)C30—H300.9300
C1—H1A0.9600C31—O71.261 (7)
C1—H1B0.9600C31—C321.546 (10)
C1—H1C0.9600C32—F121.331 (9)
C2—N11.427 (13)C32—F111.333 (10)
C2—H2A0.9600C32—F101.346 (11)
C2—H2B0.9600C37—O51.256 (8)
C2—H2C0.9600C37—C381.422 (10)
C3—N11.358 (12)C38—C391.360 (10)
C3—C41.403 (14)C38—H380.9300
C3—C81.419 (14)C39—O61.260 (8)
C4—C51.394 (15)C39—C401.541 (12)
C4—H40.9300C40—F81.297 (13)
C5—C61.367 (14)C40—F91.297 (12)
C5—H50.9300C40—F71.306 (11)
C6—C71.382 (13)C45—O31.249 (8)
C6—C91.491 (14)C45—C461.400 (10)
C7—C81.360 (13)C46—C471.384 (10)
C7—H70.9300C46—H460.9300
C8—H80.9300C47—O41.261 (8)
C9—C101.294 (13)C47—C481.503 (11)
C9—H90.9300C48—F41.269 (10)
C10—C111.464 (14)C48—F61.269 (11)
C10—H100.9300C48—F51.296 (11)
C11—C121.396 (14)Gd1—O32.366 (5)
C11—C151.403 (12)Gd1—O82.373 (5)
C12—C131.350 (14)Gd1—O62.375 (4)
C12—H120.9300Gd1—O52.375 (4)
C13—N21.351 (12)Gd1—O12.382 (5)
C13—H130.9300Gd1—O42.391 (5)
C14—C151.357 (13)Gd1—O22.400 (5)
C14—N21.365 (12)Gd1—O72.419 (4)
C44—S2—C4194 (8)O2—C21—C20116.4 (7)
C42—C41—S2113 (5)C22—C21—C20120.2 (6)
C42—C41—H41123.3C23—C22—C21122.6 (7)
S2—C41—H41123.3C23—C22—H22118.7
C41—C42—C43109 (7)C21—C22—H22118.7
C41—C42—H42125.6O1—C23—C22128.8 (7)
C43—C42—H42125.6O1—C23—C24112.6 (7)
C44—C43—C42111 (10)C22—C23—C24118.4 (7)
C44—C43—H43124.6F1—C24—F2108.3 (8)
C42—C43—H43124.6F1—C24—F3105.6 (9)
C43—C44—C45128 (10)F2—C24—F3105.0 (8)
C43—C44—S2113 (10)F1—C24—C23114.3 (8)
C45—C44—S2119 (10)F2—C24—C23111.0 (8)
C41'—S2'—C44'99 (10)F3—C24—C23112.0 (7)
C41'—C42'—C43'110 (10)C26—C25—S3112.5 (7)
C41'—C42'—H42'124.0C26—C25—H25123.7
C43'—C42'—H42'125.1S3—C25—H25123.7
C42'—C41'—S2'117 (10)C25—C26—C27116.1 (8)
C42'—C41'—H41'121.5C25—C26—H26122.0
S2'—C41'—H41'121.5C27—C26—H26122.0
C42'—C43'—C44'105 (10)C26—C27—C28106.6 (8)
C42'—C43'—H43'127.3C26—C27—H27126.7
C44'—C43'—H43'130.0C28—C27—H27126.7
C43'—C44'—S2'111 (10)C27—C28—C29128.3 (7)
C36—S4—C3390 (4)C27—C28—S3113.2 (5)
C34—C33—S4114 (5)C29—C28—S3118.4 (5)
C34—C33—H33124.0O8—C29—C30123.2 (6)
S4—C33—H33122.8O8—C29—C28116.8 (6)
C33—C34—C35112 (6)C30—C29—C28119.9 (6)
C33—C34—H34124.0C31—C30—C29121.2 (6)
C35—C34—H34124.0C31—C30—H30119.4
C36—C35—C34106 (7)C29—C30—H30119.4
C36—C35—H35127.0O7—C31—C30130.6 (6)
C34—C35—H35127.0O7—C31—C32111.5 (6)
C35—C36—C37124 (9)C30—C31—C32117.8 (6)
C35—C36—S4117 (7)F12—C32—F11107.9 (7)
C37—C36—S4118 (6)F12—C32—F10105.7 (8)
C33'—S4'—C36'96 (9)F11—C32—F10105.5 (7)
C33'—C34'—C35'97 (10)F12—C32—C31114.2 (7)
C33'—C34'—H34'131.4F11—C32—C31111.3 (7)
C35'—C34'—H34'131.5F10—C32—C31111.7 (7)
C34'—C33'—S4'117 (10)O5—C37—C38123.2 (7)
C34'—C33'—H33'121.3O5—C37—C36'116 (8)
S4'—C33'—H33'121.3C38—C37—C36'121 (8)
C36'—C35'—C34'125 (10)O5—C37—C36117 (4)
C36'—C35'—H35'117.5C38—C37—C36120 (4)
C34'—C35'—H35'117.5C39—C38—C37122.4 (7)
C35'—C36'—C37125 (10)C39—C38—H38118.8
C35'—C36'—S4'104 (10)C37—C38—H38118.8
C37—C36'—S4'131 (10)O6—C39—C38129.1 (7)
N1—C1—H1A109.5O6—C39—C40112.9 (7)
N1—C1—H1B109.5C38—C39—C40117.8 (7)
H1A—C1—H1B109.5F8—C40—F9108.2 (10)
N1—C1—H1C109.5F8—C40—F7104.5 (11)
H1A—C1—H1C109.5F9—C40—F7105.8 (9)
H1B—C1—H1C109.5F8—C40—C39111.7 (9)
N1—C2—H2A109.5F9—C40—C39113.9 (10)
N1—C2—H2B109.5F7—C40—C39112.1 (8)
H2A—C2—H2B109.5O3—C45—C44'118 (10)
N1—C2—H2C109.5O3—C45—C46123.3 (7)
H2A—C2—H2C109.5C44'—C45—C46119 (10)
H2B—C2—H2C109.5O3—C45—C44113 (9)
N1—C3—C4122.4 (10)C46—C45—C44123 (9)
N1—C3—C8122.7 (9)C47—C46—C45122.7 (7)
C4—C3—C8114.9 (10)C47—C46—H46118.6
C5—C4—C3120.4 (10)C45—C46—H46118.6
C5—C4—H4119.8O4—C47—C46128.0 (7)
C3—C4—H4119.8O4—C47—C48114.9 (7)
C6—C5—C4124.3 (10)C46—C47—C48117.1 (7)
C6—C5—H5117.8F4—C48—F6106.4 (10)
C4—C5—H5117.8F4—C48—F5106.6 (10)
C5—C6—C7114.8 (10)F6—C48—F5100.1 (9)
C5—C6—C9124.7 (10)F4—C48—C47116.6 (7)
C7—C6—C9120.4 (10)F6—C48—C47112.3 (9)
C8—C7—C6123.4 (10)F5—C48—C47113.4 (8)
C8—C7—H7118.3O3—Gd1—O8145.78 (17)
C6—C7—H7118.3O3—Gd1—O6113.47 (19)
C7—C8—C3122.1 (10)O8—Gd1—O678.58 (16)
C7—C8—H8119.0O3—Gd1—O572.66 (17)
C3—C8—H8119.0O8—Gd1—O5139.85 (16)
C10—C9—C6125.6 (10)O6—Gd1—O571.39 (16)
C10—C9—H9117.2O3—Gd1—O176.16 (19)
C6—C9—H9117.2O8—Gd1—O1111.65 (18)
C9—C10—C11122.7 (10)O6—Gd1—O1147.37 (16)
C9—C10—H10118.7O5—Gd1—O183.11 (17)
C11—C10—H10118.7O3—Gd1—O470.91 (17)
C12—C11—C15116.0 (10)O8—Gd1—O481.99 (18)
C12—C11—C10118.3 (9)O6—Gd1—O476.49 (17)
C15—C11—C10125.7 (10)O5—Gd1—O4114.97 (19)
C13—C12—C11120.9 (9)O1—Gd1—O4134.31 (16)
C13—C12—H12119.5O3—Gd1—O283.09 (18)
C11—C12—H12119.5O8—Gd1—O269.56 (16)
C12—C13—N2120.7 (10)O6—Gd1—O2139.31 (16)
C12—C13—H13119.6O5—Gd1—O2147.91 (16)
N2—C13—H13119.6O1—Gd1—O270.68 (16)
C15—C14—N2117.8 (9)O4—Gd1—O274.64 (17)
C15—C14—H14121.1O3—Gd1—O7142.07 (16)
N2—C14—H14121.1O8—Gd1—O770.05 (15)
C14—C15—C11122.8 (10)O6—Gd1—O778.17 (17)
C14—C15—H15118.6O5—Gd1—O778.07 (16)
C11—C15—H15118.6O1—Gd1—O776.86 (16)
N2—C16—H16A109.5O4—Gd1—O7145.33 (15)
N2—C16—H16B109.5O2—Gd1—O7112.17 (17)
H16A—C16—H16B109.5C3—N1—C2121.7 (9)
N2—C16—H16C109.5C3—N1—C1120.3 (9)
H16A—C16—H16C109.5C2—N1—C1117.8 (10)
H16B—C16—H16C109.5C13—N2—C14121.5 (9)
C18—C17—S1111.9 (8)C13—N2—C16119.2 (9)
C18—C17—H17124.1C14—N2—C16119.3 (8)
S1—C17—H17124.1C23—O1—Gd1130.2 (4)
C17—C18—C19116.2 (9)C21—O2—Gd1136.1 (5)
C17—C18—H18121.9C45—O3—Gd1135.7 (5)
C19—C18—H18121.9C47—O4—Gd1128.7 (4)
C18—C19—C20108.7 (8)C37—O5—Gd1136.1 (5)
C18—C19—H19125.7C39—O6—Gd1130.1 (5)
C20—C19—H19125.7C31—O7—Gd1129.0 (4)
C19—C20—C21130.3 (7)C29—O8—Gd1133.5 (4)
C19—C20—S1111.4 (6)C17—S1—C2091.8 (5)
C21—C20—S1118.3 (6)C25—S3—C2891.6 (5)
O2—C21—C22123.4 (7)
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21071001), the Education Committee of Anhui Province (grant No. KJ2010A030), the Natural Science Foundation of Anhui Province (grant No. 1208085MB22).

References

First citationBradley, J. D. B. & Pollnau, M. (2011). Laser Photonics Rev. 5, 368–403.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J. G. & Eliseeva, S. V. (2013). Chem. Sci. 4, 1939–1949.  Google Scholar
First citationCui, Y. J., Yue, Y. F., Qian, G. D. & Chen, B. L. (2012). Chem. Rev. 112, 1126–1162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhao, C.-F., He, G.-S., Bhawalkar, J. D., Park, C. K. & Prasad, P. N. (1995a). Chem. Mater. 7, 1979–1983.  CrossRef CAS Web of Science Google Scholar
First citationZhao, C.-F., Park, C. K., Prasad, P. N., Zhang, Y., Ghosal, S. & Burzynski, R. (1995b). Chem. Mater. 7, 1237–1242.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds