metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Aqua­bis­­(2,2′-bi­pyridine-κ2N,N′)chlorido­nickel(II) chloride chloro­form monosolvate hemihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA, and bDepartment of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki, 54124, Greece
*Correspondence e-mail: logesh.mathivathanan@fiu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 October 2016; accepted 15 November 2016; online 22 November 2016)

The title solvated salt, [NiCl(C10H8N2)2(H2O)]Cl·CHCl3·0.5H2O, contains a mononuclear NiII complex cation with 2,2′-bi­pyridine, chloride and aqua ligands forming a slightly distorted ClN4O octa­hedral coordination set. The charge of the cation is balanced by a chloride anion. In the crystal, half a water mol­ecule and a chloro­form solvent mol­ecule are present per formula unit. Individual components are held together by O—H⋯Cl hydrogen bonding and ππ inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The NiII cation has a distorted octa­hedral coordination environment with the chlorido and aqua ligands in a cis configuration relative to each other (Fig. 1[link]). The two N,N′-bi­pyridine ligands are almost perpendicular to each other [dihedral angle 88.73 (16)°]. The Ni—N distances range between 2.059 (3) and 2.102 (3) Å, while the Ni—O(water) and Ni—Cl distances are 2.084 (3) and 2.418 (1) Å, respectively. Similar cis-[MIICl(2,2′-bipy)2(H2O)]+ cations are known for M = Mn (Chen et al., 1995[Chen, X.-M., Shi, K.-L., Mak, T. C. W. & Luo, B.-S. (1995). Acta Cryst. C51, 358-361.]) and Cd (Lei & Li, 2011[Lei, Z.-H. & Li, X. (2011). J. Coord. Chem. 64, 2450-2457.]). A few [NiLL′)2Cl(OHR)]+ complexes are known in the literature where LL′ is a bidentate chelating N-donor ligand such as 2,2′-bi­pyridine or 1,10-phenanthroline. Examples with R = H or methyl were given by Brewer et al. (2003[Brewer, B., Brooks, N. R., Abdul-Halim, R. & Sykes, A. G. (2003). J. Chem. Crystallogr. 33, 651-662.]) and Chesnut et al. (1999[Chesnut, D. J., Haushalter, R. C. & Zubieta, J. (1999). Inorg. Chim. Acta, 292, 41-51.]). Inter­estingly, all except one adopt the cis-configuration. The trans-configuration between Cl and H2O is known for a tetra­dentate bis-phenanthroline ligand, viz., 2,2′-bis-(1,10-phenanthroline) (Rice & Anderson, 2000[Rice, C. R. & Anderson, K. M. (2000). Polyhedron, 19, 495-498.]), where steric hindrance presumably prevents a cis configuration. In one case, [Ni(2,2′-bipy)2Cl(OH2)]+ has been formed in situ by reacting [Ni(2,2′-bipy)3]2+ with Cl and H2O. The reaction was concentration-sensitive and the [Ni(2,2′-bipy)Cl(OH2)]+ cation forms a three-dimensional hydrogen-bonded network with deprotonated benzene tetra­carb­oxy­lic acid moieties (Sun et al., 2010[Sun, M.-L., Zhang, L., Lin, Q.-P., Zhang, J. & Yao, Y.-G. (2010). Cryst. Growth Des. 10, 1464-1467.]).

[Figure 1]
Figure 1
The mol­ecular structure of the cation of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

The asymmetric unit of the title compound also contains a CHCl3 solvent mol­ecule and a lattice water mol­ecule located on a twofold rotation axis. The Ni-bound water (O1) mol­ecule forms weak hydrogen bonds with the Cl counter-anion (Cl5) and the coordinating Cl (Cl1) atom from an adjacent mol­ecule (Table 1[link], Fig. 2[link]). Although the H atoms of the lattice water mol­ecule could not be located, O⋯Cl distances of 3.231 (3) Å to the counter-anion indicate likewise weak hydrogen bonding. ππ inter­actions between the pyridyl rings of parallel-stacked 2,2-bipy mol­ecules [C11—C13 = 3.465 (6) Å] are also present in the crystal lattice (Fig. 3[link]). It is worth noting that similar Cl-bridged hetero- and homo-binuclear compounds dominate NiCl2(LL')2-chemistry. One example of such heterobinuclear compound, [Ni(2,2′-bipy)2(μ-Cl)2CdI2], has been reported (Chesnut et al., 1999[Chesnut, D. J., Haushalter, R. C. & Zubieta, J. (1999). Inorg. Chim. Acta, 292, 41-51.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl5 0.87 (2) 2.25 (2) 3.115 (3) 171 (5)
O1—H1B⋯Cl1i 0.87 (2) 2.30 (2) 3.148 (3) 163 (4)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
The inter­molecular ππ inter­actions between the 2,2′-bipy ligands of adjacent complex cations in the title compound.

Synthesis and crystallization

The title compound was isolated when 2,2′-bi­pyridine was used as an auxiliary ligand for the intended preparation of a Ni-sulfonamide complex. A solution of NiCl2·6H2O (34.2 mg, 0.144 mmol) in 10 ml MeOH was added slowly to a solution of N,N-diphenyl-1,2-benzene­sulfonamide (60 mg, 0.144 mmol) and 2,2′-bi­pyridine (25.5 mg, 0.163 mmol) in 8 ml MeOH and 2.2 eq. of NHEt2, at room temperature. A precipitate formed after 10 min and the reaction was stirred for an additional three hours. The precipitate was filtered off the methanol solution; the yellow–green precipitate was collected and crystals were obtained by diffusion of diethyl ether vapor into a chloro­form solution of the compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms of the lattice water mol­ecule could not be modelled satisfactorily and were omitted from the refinement, but are included in the formula.

Table 2
Experimental details

Crystal data
Chemical formula [NiCl(C10H8N2)2(H2O)]Cl·CHCl3·0.5H2O
Mr 588.36
Crystal system, space group Monoclinic, C2/c
Temperature (K) 300
a, b, c (Å) 29.1709 (14), 11.2898 (5), 20.0517 (10)
β (°) 131.163 (1)
V3) 4971.5 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.34
Crystal size (mm) 0.14 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.692, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 42949, 5141, 3870
Rint 0.048
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.05
No. of reflections 5141
No. of parameters 300
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.71
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip et al., 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015); program(s) used to refine structure: ShelXle (Hübschle et al., 2011) and OLEX2 (Dolomanov et al., 2009); molecular graphics: ShelXle (Hübschle et al., 2011); software used to prepare material for publication: publCIF (Westrip et al., 2010).

Aquabis(2,2'-bipyridine-κ2N,N')chloridonickel(II) chloride chloroform monosolvate hemihydrate top
Crystal data top
[NiCl(C10H8N2)2(H2O)]Cl·CHCl3·0.5H2OF(000) = 2392
Mr = 588.36Dx = 1.572 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.1709 (14) ÅCell parameters from 9884 reflections
b = 11.2898 (5) Åθ = 2.8–26.3°
c = 20.0517 (10) ŵ = 1.34 mm1
β = 131.163 (1)°T = 300 K
V = 4971.5 (4) Å3Trapezoid, blue
Z = 80.14 × 0.07 × 0.06 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
3870 reflections with I > 2σ(I)
ω and φ scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 26.5°, θmin = 2.8°
Tmin = 0.692, Tmax = 0.745h = 3636
42949 measured reflectionsk = 1414
5141 independent reflectionsl = 2525
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0585P)2 + 19.6746P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5141 reflectionsΔρmax = 0.56 e Å3
300 parametersΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.41761 (2)0.23752 (4)0.55719 (3)0.02914 (15)
Cl10.52576 (4)0.27540 (10)0.66856 (6)0.0436 (3)
O10.42085 (15)0.1520 (3)0.65230 (19)0.0481 (8)
N10.32221 (14)0.2227 (3)0.4674 (2)0.0329 (7)
N20.39253 (14)0.3961 (3)0.5772 (2)0.0329 (7)
N30.41843 (14)0.3077 (3)0.4617 (2)0.0372 (8)
N40.42689 (14)0.0861 (3)0.5098 (2)0.0387 (8)
C10.33271 (17)0.4149 (3)0.5258 (2)0.0315 (8)
C20.3104 (2)0.5186 (4)0.5327 (3)0.0444 (10)
H20.26870.52990.49800.053*
C30.3508 (2)0.6044 (4)0.5916 (3)0.0532 (12)
H30.33670.67460.59680.064*
C40.4116 (2)0.5858 (4)0.6421 (3)0.0494 (11)
H40.43950.64350.68160.059*
C50.4311 (2)0.4808 (4)0.6340 (3)0.0437 (10)
H50.47270.46780.66940.052*
C60.29276 (16)0.3194 (3)0.4628 (2)0.0313 (8)
C70.23009 (18)0.3261 (4)0.4031 (3)0.0443 (10)
H70.21060.39390.39970.053*
C80.1965 (2)0.2306 (4)0.3481 (3)0.0497 (11)
H80.15420.23340.30770.060*
C90.22615 (19)0.1322 (4)0.3538 (3)0.0482 (11)
H90.20440.06670.31800.058*
C100.28837 (18)0.1316 (4)0.4131 (3)0.0427 (10)
H100.30830.06480.41590.051*
C110.42223 (18)0.1021 (4)0.4384 (3)0.0451 (11)
C120.4180 (2)0.0055 (6)0.3914 (4)0.0672 (15)
H120.41380.01730.34170.081*
C130.4201 (3)0.1054 (6)0.4185 (5)0.0789 (18)
H130.41730.17020.38740.095*
C140.4263 (2)0.1229 (5)0.4919 (4)0.0718 (16)
H140.42810.19890.51130.086*
C150.4298 (2)0.0244 (4)0.5363 (3)0.0520 (11)
H150.43430.03550.58630.062*
C160.42170 (18)0.2267 (4)0.4160 (3)0.0450 (11)
C170.4276 (2)0.2633 (6)0.3550 (3)0.0692 (16)
H170.43040.20720.32370.083*
C180.4294 (3)0.3796 (7)0.3418 (4)0.0792 (19)
H180.43300.40400.30120.095*
C190.4259 (2)0.4610 (6)0.3881 (3)0.0709 (16)
H190.42740.54150.38000.085*
C200.4200 (2)0.4220 (4)0.4472 (3)0.0516 (11)
H200.41700.47790.47830.062*
H1A0.402 (2)0.088 (3)0.646 (3)0.062*
H1B0.4432 (19)0.182 (4)0.7055 (18)0.062*
Cl20.28738 (15)0.61538 (18)0.34457 (16)0.1420 (10)
Cl30.23219 (9)0.83353 (17)0.25316 (11)0.1017 (6)
Cl40.28069 (7)0.80694 (13)0.43133 (10)0.0766 (4)
C210.2434 (3)0.7354 (5)0.3311 (4)0.0801 (17)
H210.20390.70640.30910.096*
Cl50.36460 (5)0.08254 (10)0.65231 (8)0.0556 (3)
O20.50000.8219 (5)0.75000.127 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0288 (3)0.0340 (3)0.0255 (2)0.0032 (2)0.0182 (2)0.0000 (2)
Cl10.0293 (5)0.0628 (7)0.0319 (5)0.0040 (4)0.0172 (4)0.0056 (5)
O10.064 (2)0.0492 (18)0.0373 (16)0.0183 (15)0.0359 (16)0.0078 (14)
N10.0319 (16)0.0323 (17)0.0328 (16)0.0022 (13)0.0206 (15)0.0001 (13)
N20.0335 (17)0.0348 (17)0.0306 (16)0.0012 (14)0.0212 (15)0.0038 (13)
N30.0319 (17)0.051 (2)0.0259 (16)0.0028 (15)0.0178 (15)0.0018 (15)
N40.0329 (18)0.044 (2)0.0405 (19)0.0055 (14)0.0249 (16)0.0013 (15)
C10.038 (2)0.0300 (19)0.0320 (19)0.0023 (16)0.0256 (18)0.0021 (15)
C20.047 (2)0.041 (2)0.046 (2)0.0100 (19)0.031 (2)0.0027 (19)
C30.075 (3)0.036 (2)0.058 (3)0.004 (2)0.048 (3)0.005 (2)
C40.063 (3)0.041 (2)0.046 (3)0.013 (2)0.037 (2)0.014 (2)
C50.043 (2)0.046 (2)0.040 (2)0.0075 (19)0.026 (2)0.0091 (19)
C60.034 (2)0.034 (2)0.0308 (19)0.0052 (16)0.0230 (17)0.0041 (15)
C70.034 (2)0.048 (3)0.046 (2)0.0063 (19)0.024 (2)0.002 (2)
C80.029 (2)0.063 (3)0.045 (2)0.002 (2)0.019 (2)0.003 (2)
C90.038 (2)0.048 (3)0.045 (2)0.012 (2)0.022 (2)0.013 (2)
C100.039 (2)0.037 (2)0.047 (2)0.0012 (18)0.026 (2)0.0074 (19)
C110.033 (2)0.068 (3)0.038 (2)0.001 (2)0.025 (2)0.010 (2)
C120.063 (3)0.085 (4)0.070 (3)0.007 (3)0.051 (3)0.031 (3)
C130.075 (4)0.075 (4)0.104 (5)0.002 (3)0.066 (4)0.036 (4)
C140.064 (3)0.049 (3)0.108 (5)0.011 (2)0.059 (4)0.008 (3)
C150.050 (3)0.051 (3)0.061 (3)0.011 (2)0.039 (2)0.000 (2)
C160.032 (2)0.075 (3)0.028 (2)0.000 (2)0.0200 (18)0.002 (2)
C170.066 (3)0.112 (5)0.044 (3)0.004 (3)0.043 (3)0.006 (3)
C180.076 (4)0.123 (6)0.049 (3)0.010 (4)0.045 (3)0.017 (3)
C190.065 (3)0.086 (4)0.048 (3)0.017 (3)0.032 (3)0.015 (3)
C200.051 (3)0.061 (3)0.037 (2)0.008 (2)0.027 (2)0.004 (2)
Cl20.261 (3)0.0811 (13)0.1370 (18)0.0660 (16)0.154 (2)0.0285 (12)
Cl30.1164 (14)0.0971 (13)0.0744 (10)0.0275 (11)0.0554 (11)0.0225 (9)
Cl40.0888 (10)0.0663 (9)0.0773 (9)0.0039 (8)0.0557 (9)0.0023 (7)
C210.079 (4)0.073 (4)0.082 (4)0.000 (3)0.050 (4)0.003 (3)
Cl50.0589 (7)0.0393 (6)0.0658 (7)0.0008 (5)0.0398 (6)0.0006 (5)
O20.064 (4)0.053 (4)0.170 (7)0.0000.036 (4)0.000
Geometric parameters (Å, º) top
Ni1—N42.059 (3)C7—H70.9300
Ni1—N22.071 (3)C8—C91.365 (6)
Ni1—O12.084 (3)C8—H80.9300
Ni1—N32.087 (3)C9—C101.366 (6)
Ni1—N12.102 (3)C9—H90.9300
Ni1—Cl12.4183 (11)C10—H100.9300
O1—H1A0.872 (19)C11—C121.393 (6)
O1—H1B0.874 (19)C11—C161.473 (7)
N1—C101.343 (5)C12—C131.351 (9)
N1—C61.355 (5)C12—H120.9300
N2—C11.336 (5)C13—C141.374 (8)
N2—C51.338 (5)C13—H130.9300
N3—C201.330 (6)C14—C151.385 (7)
N3—C161.341 (5)C14—H140.9300
N4—C151.337 (6)C15—H150.9300
N4—C111.357 (5)C16—C171.407 (6)
C1—C21.390 (5)C17—C181.347 (8)
C1—C61.476 (5)C17—H170.9300
C2—C31.374 (6)C18—C191.356 (9)
C2—H20.9300C18—H180.9300
C3—C41.361 (7)C19—C201.378 (7)
C3—H30.9300C19—H190.9300
C4—C51.370 (6)C20—H200.9300
C4—H40.9300Cl2—C211.760 (6)
C5—H50.9300Cl3—C211.761 (7)
C6—C71.378 (5)Cl4—C211.731 (6)
C7—C81.384 (6)C21—H210.9800
N4—Ni1—N2167.95 (13)C6—C7—C8119.2 (4)
N4—Ni1—O195.59 (13)C6—C7—H7120.4
N2—Ni1—O191.87 (12)C8—C7—H7120.4
N4—Ni1—N378.85 (14)C9—C8—C7119.4 (4)
N2—Ni1—N393.92 (13)C9—C8—H8120.3
O1—Ni1—N3174.13 (13)C7—C8—H8120.3
N4—Ni1—N192.32 (12)C8—C9—C10118.8 (4)
N2—Ni1—N178.32 (12)C8—C9—H9120.6
O1—Ni1—N189.09 (12)C10—C9—H9120.6
N3—Ni1—N193.00 (12)N1—C10—C9123.2 (4)
N4—Ni1—Cl194.88 (9)N1—C10—H10118.4
N2—Ni1—Cl194.63 (9)C9—C10—H10118.4
O1—Ni1—Cl189.50 (9)N4—C11—C12120.8 (5)
N3—Ni1—Cl189.10 (9)N4—C11—C16114.9 (4)
N1—Ni1—Cl1172.76 (9)C12—C11—C16124.2 (4)
Ni1—O1—H1A127 (3)C13—C12—C11119.5 (5)
Ni1—O1—H1B119 (3)C13—C12—H12120.2
H1A—O1—H1B114 (5)C11—C12—H12120.2
C10—N1—C6117.9 (3)C12—C13—C14120.2 (5)
C10—N1—Ni1127.4 (3)C12—C13—H13119.9
C6—N1—Ni1114.6 (2)C14—C13—H13119.9
C1—N2—C5118.9 (3)C13—C14—C15118.4 (6)
C1—N2—Ni1115.9 (2)C13—C14—H14120.8
C5—N2—Ni1125.2 (3)C15—C14—H14120.8
C20—N3—C16119.0 (4)N4—C15—C14122.3 (5)
C20—N3—Ni1126.2 (3)N4—C15—H15118.8
C16—N3—Ni1114.6 (3)C14—C15—H15118.8
C15—N4—C11118.7 (4)N3—C16—C17119.9 (5)
C15—N4—Ni1125.7 (3)N3—C16—C11115.7 (4)
C11—N4—Ni1115.1 (3)C17—C16—C11124.3 (4)
N2—C1—C2121.1 (4)C18—C17—C16120.0 (5)
N2—C1—C6116.0 (3)C18—C17—H17120.0
C2—C1—C6122.9 (3)C16—C17—H17120.0
C3—C2—C1119.1 (4)C17—C18—C19119.8 (5)
C3—C2—H2120.4C17—C18—H18120.1
C1—C2—H2120.4C19—C18—H18120.1
C4—C3—C2119.4 (4)C18—C19—C20118.7 (6)
C4—C3—H3120.3C18—C19—H19120.6
C2—C3—H3120.3C20—C19—H19120.6
C3—C4—C5119.0 (4)N3—C20—C19122.6 (5)
C3—C4—H4120.5N3—C20—H20118.7
C5—C4—H4120.5C19—C20—H20118.7
N2—C5—C4122.5 (4)Cl4—C21—Cl2110.1 (4)
N2—C5—H5118.7Cl4—C21—Cl3110.2 (3)
C4—C5—H5118.7Cl2—C21—Cl3108.2 (4)
N1—C6—C7121.5 (4)Cl4—C21—H21109.5
N1—C6—C1115.0 (3)Cl2—C21—H21109.5
C7—C6—C1123.5 (3)Cl3—C21—H21109.5
C5—N2—C1—C22.0 (5)C15—N4—C11—C122.6 (6)
Ni1—N2—C1—C2179.4 (3)Ni1—N4—C11—C12169.8 (3)
C5—N2—C1—C6178.2 (3)C15—N4—C11—C16177.7 (4)
Ni1—N2—C1—C60.8 (4)Ni1—N4—C11—C169.9 (4)
N2—C1—C2—C32.0 (6)N4—C11—C12—C131.7 (7)
C6—C1—C2—C3178.3 (4)C16—C11—C12—C13178.7 (5)
C1—C2—C3—C40.4 (7)C11—C12—C13—C140.1 (8)
C2—C3—C4—C51.1 (7)C12—C13—C14—C150.5 (8)
C1—N2—C5—C40.5 (6)C11—N4—C15—C142.1 (6)
Ni1—N2—C5—C4177.7 (3)Ni1—N4—C15—C14169.5 (4)
C3—C4—C5—N21.1 (7)C13—C14—C15—N40.5 (8)
C10—N1—C6—C71.6 (5)C20—N3—C16—C171.0 (6)
Ni1—N1—C6—C7175.9 (3)Ni1—N3—C16—C17174.8 (3)
C10—N1—C6—C1178.5 (3)C20—N3—C16—C11177.6 (4)
Ni1—N1—C6—C14.0 (4)Ni1—N3—C16—C111.8 (4)
N2—C1—C6—N12.2 (5)N4—C11—C16—N37.7 (5)
C2—C1—C6—N1177.6 (4)C12—C11—C16—N3171.9 (4)
N2—C1—C6—C7177.7 (4)N4—C11—C16—C17168.7 (4)
C2—C1—C6—C72.5 (6)C12—C11—C16—C1711.7 (7)
N1—C6—C7—C81.7 (6)N3—C16—C17—C180.7 (8)
C1—C6—C7—C8178.4 (4)C11—C16—C17—C18177.0 (5)
C6—C7—C8—C90.4 (7)C16—C17—C18—C190.5 (9)
C7—C8—C9—C100.9 (7)C17—C18—C19—C200.6 (9)
C6—N1—C10—C90.2 (6)C16—N3—C20—C191.1 (6)
Ni1—N1—C10—C9177.0 (3)Ni1—N3—C20—C19174.1 (3)
C8—C9—C10—N11.1 (7)C18—C19—C20—N30.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl50.87 (2)2.25 (2)3.115 (3)171 (5)
O1—H1B···Cl1i0.87 (2)2.30 (2)3.148 (3)163 (4)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

REU participant EV was supported by the NSF–REU Site Grant CHE1560375 to FIU.

References

First citationBrewer, B., Brooks, N. R., Abdul-Halim, R. & Sykes, A. G. (2003). J. Chem. Crystallogr. 33, 651–662.  CSD CrossRef CAS Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M., Shi, K.-L., Mak, T. C. W. & Luo, B.-S. (1995). Acta Cryst. C51, 358–361.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChesnut, D. J., Haushalter, R. C. & Zubieta, J. (1999). Inorg. Chim. Acta, 292, 41–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLei, Z.-H. & Li, X. (2011). J. Coord. Chem. 64, 2450–2457.  CSD CrossRef CAS Google Scholar
First citationRice, C. R. & Anderson, K. M. (2000). Polyhedron, 19, 495–498.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, M.-L., Zhang, L., Lin, Q.-P., Zhang, J. & Yao, Y.-G. (2010). Cryst. Growth Des. 10, 1464–1467.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds