organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Amino-3-[2-(9H-carbazol-9-yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione di­methyl sulfoxide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and fKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 November 2016; accepted 19 November 2016; online 25 November 2016)

In the crystal of the title compound, C16H15N5S·C2H6OS, both the 1,2,4-triazole derivative mol­ecules and the disordered [refined occupancy ratio = 0.604 (1):0.396 (1)] dimethyl sulfoxide solvent mol­ecules form centrosymmetric dimers, by way of pairwise N—H⋯S and C—H⋯O hydrogen bonds, respectively. In the crystal, the two types of dimer are connected by N—H⋯O hydrogen bonds, forming infinite chains parallel to [101]. The packing is assisted by ππ stacking and C—H⋯π(ring) and N—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,4-Triazole and its derivatives are found to be associated with various biological activities (Dundar et al., 2007[Dundar, Y., Cakir, B., Kupeli, E., Sahin, M. & Noyanalpan, N. (2007). Turk. J. Chem. 31, 301-313.]). For example, fluconazole is used as an anti­microbial drug, while vorozole, letrozole and anastrozole are non-steroidal and used for the treatment of cancer, and loreclezole is an anti­convulsant (Bekircan & Bektas, 2006[Bekircan, O. & Bektas, H. (2006). Molecules, 11, 469-477.]). Moreover, 4-amino-1,2,4-triazoles are potentially good corrosion inhibitors (Dundar et al., 2007[Dundar, Y., Cakir, B., Kupeli, E., Sahin, M. & Noyanalpan, N. (2007). Turk. J. Chem. 31, 301-313.]). As part of our studies of triazole derivatives, we report herein the synthesis and crystal structure of the title 1,2,4-triazole derivative.

In the 1,2,4-triazole mol­ecule (Fig. 1[link]), the r.m.s. deviation from planarity of the carbazole moiety is 0.026 Å. The dihedral angle between its mean plane and the plane of the triazole ring is 2.01 (8)°. In the crystal, pairs of these mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯S hydrogen bonds, giving rise to an R22(10) graph-set motif. The dimethyl sulfoxide solvent mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into inversion dimers with a R22(8) motif (Table 1[link], Fig. 2[link]). The two types of dimer are connected by N—H⋯O hydrogen bonds into chains running parallel to [101]. Between the chains, the primary inter­molecular inter­actions are ππ-stacking between the N1/C1/C6/C7/C2 ring and the triazole ring at x, −1 + y, z [centroid-to-centroid distance = 3.443 (1) Å; dihedral angle = 1.7 (1)°] and an offset ππ-stacking between the triazole ring and the C1–C6 ring at x, 1 + y, z [centroid-to-centroid distance = 3.706 (1) Å; dihedral angle = 1.0 (1)°, slippage 1.60 Å]. Additionally, there is a C5—H5⋯π(ring) inter­action and an N5—H5Aπ(ring) inter­action (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the six-membered ring of the carbazole moiety.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1Ai 0.91 1.92 2.818 (3) 171
N3—H3A⋯O1Bi 0.91 1.92 2.758 (4) 153
N5—H5B⋯S1ii 0.91 2.51 3.3500 (17) 154
C17A—H17C⋯O1Aiii 0.98 2.43 3.242 (15) 140
C5—H5⋯Cg4iv 0.95 2.54 3.452 (2) 161
N5—H5ACg4i 0.91 2.60 3.2718 (18) 131
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The title compound, with the atomic labelling and displacement ellipsoids drawn at the 30% probability level. The minor disorder component of the solvent mol­ecule is not shown.
[Figure 2]
Figure 2
The packing of the title mol­ecule, viewed along the b axis, showing the N—H⋯S and C—H⋯O interactions. Only the major component of the disordered DMSO solvent mol­ecule is shown and H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view of the ππ stacking (purple dotted lines) and C—H⋯π(ring) (green dotted lines) inter­actions. [Symmetry codes: (i) x, −1 + y, z; (ii) x, 1 + y, z; (iii) [{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z.]

Synthesis and crystallization

A mixture of 3-{2-[4aH-carbazol-9(9aH)-yl]eth­yl}-1,2,4-oxa­diazole-5-thiol (297 mg, 1 mmol) and an excess of hydrazine in ethanol (10 ml) was refluxed and monitored by TLC until completion. The solid product was collected by filtration and recrystallized from a di­methyl­sulfoxide solution to afford crystals of the title compound in a quality sufficient for X-ray diffraction measurements.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The solvent mol­ecule was found to be disordered over two sets of sites with a refined ratio of 0.604 (1):0.396 (1). For refinement, restraints were applied so that the geometries of the two components were approximately the same. The (101) reflection was affected by the beam-stop and was omitted from the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C16H15N5S·C2H6OS
Mr 387.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 14.7620 (4), 7.3509 (2), 17.9987 (5)
β (°) 106.936 (1)
V3) 1868.41 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.73
Crystal size (mm) 0.20 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.60, 0.67
No. of measured, independent and observed [I > 2σ(I)] reflections 13596, 3572, 3350
Rint 0.027
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.04
No. of reflections 3572
No. of parameters 248
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.76
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

4-Amino-3-[2-(9H-carbazol-9-yl)ethyl]-1H-1,2,4-triazole-5(4H)-thione dimethyl sulfoxide monosolvate top
Crystal data top
C16H15N5S·C2H6OSF(000) = 816
Mr = 387.52Dx = 1.378 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 14.7620 (4) ÅCell parameters from 9932 reflections
b = 7.3509 (2) Åθ = 3.4–72.3°
c = 17.9987 (5) ŵ = 2.73 mm1
β = 106.936 (1)°T = 150 K
V = 1868.41 (9) Å3Block, colourless
Z = 40.20 × 0.20 × 0.16 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3572 independent reflections
Radiation source: INCOATEC IµS micro-focus source3350 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 3.4°
ω scansh = 1718
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 99
Tmin = 0.60, Tmax = 0.67l = 2220
13596 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0676P)2 + 1.6793P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3572 reflectionsΔρmax = 0.57 e Å3
248 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.44681 (3)0.79061 (6)0.48603 (3)0.02910 (16)
N10.29032 (11)0.0556 (2)0.60195 (9)0.0209 (3)
N20.22063 (12)0.4939 (2)0.46625 (10)0.0295 (4)
N30.27261 (12)0.6283 (2)0.44330 (10)0.0279 (4)
H3A0.24620.70310.40250.033*
N40.36487 (11)0.5161 (2)0.54612 (9)0.0216 (3)
N50.44202 (12)0.4762 (2)0.61052 (10)0.0269 (4)
H5A0.46210.58530.63330.032*
H5B0.48780.42980.59140.032*
C10.20500 (13)0.1472 (2)0.58859 (10)0.0200 (4)
C20.12152 (14)0.1248 (3)0.52883 (11)0.0259 (4)
H20.11650.03620.48940.031*
C30.04597 (15)0.2363 (3)0.52896 (13)0.0315 (4)
H30.01170.22450.48840.038*
C40.05233 (14)0.3661 (3)0.58726 (13)0.0312 (5)
H40.00120.43900.58620.037*
C50.13586 (14)0.3891 (3)0.64633 (12)0.0259 (4)
H50.14030.47800.68560.031*
C60.21365 (13)0.2795 (2)0.64734 (10)0.0197 (4)
C70.30950 (13)0.2672 (2)0.69755 (10)0.0200 (4)
C80.36090 (14)0.3633 (3)0.76355 (11)0.0262 (4)
H80.33170.45720.78460.031*
C90.45494 (15)0.3189 (3)0.79747 (12)0.0322 (5)
H90.49050.38320.84230.039*
C100.49835 (14)0.1808 (3)0.76675 (12)0.0320 (5)
H100.56310.15340.79110.038*
C110.44939 (14)0.0828 (3)0.70184 (12)0.0275 (4)
H110.47920.01120.68130.033*
C120.35446 (13)0.1275 (2)0.66761 (10)0.0205 (4)
C130.30589 (14)0.0988 (2)0.55708 (11)0.0244 (4)
H13A0.27860.07190.50110.029*
H13B0.37480.11750.56720.029*
C140.26134 (14)0.2740 (2)0.57672 (12)0.0260 (4)
H14A0.19230.25650.56630.031*
H14B0.28860.30220.63260.031*
C150.27912 (13)0.4284 (2)0.52932 (11)0.0228 (4)
C160.36048 (14)0.6464 (2)0.49055 (11)0.0233 (4)
S2A0.20345 (6)0.06746 (11)0.34615 (5)0.0318 (2)0.6038 (10)
O1A0.20930 (19)0.1242 (3)0.31940 (15)0.0372 (6)0.6038 (10)
C17A0.3100 (5)0.1801 (13)0.3459 (10)0.0372 (5)0.6038 (10)
H17A0.30820.30610.36320.056*0.6038 (10)
H17B0.36410.11710.38120.056*0.6038 (10)
H17C0.31640.17920.29320.056*0.6038 (10)
C18A0.1235 (4)0.1867 (10)0.2692 (10)0.0494 (18)0.6038 (10)
H18A0.11820.31290.28500.074*0.6038 (10)
H18B0.14680.18510.22350.074*0.6038 (10)
H18C0.06120.12840.25650.074*0.6038 (10)
S2B0.21829 (9)0.05075 (17)0.29873 (8)0.0318 (2)0.3962 (10)
O1B0.1936 (3)0.0693 (5)0.3583 (2)0.0372 (6)0.3962 (10)
C17B0.3171 (8)0.185 (2)0.3500 (15)0.0372 (5)0.3962 (10)
H17D0.33560.26550.31350.056*0.3962 (10)
H17E0.29980.25860.38920.056*0.3962 (10)
H17F0.37020.10530.37550.056*0.3962 (10)
C18B0.1314 (6)0.2245 (18)0.2758 (16)0.0494 (18)0.3962 (10)
H18D0.14410.30670.23720.074*0.3962 (10)
H18E0.06860.16970.25470.074*0.3962 (10)
H18F0.13330.29310.32290.074*0.3962 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0326 (3)0.0194 (3)0.0406 (3)0.00384 (17)0.0189 (2)0.00093 (18)
N10.0257 (8)0.0148 (7)0.0238 (8)0.0011 (6)0.0096 (6)0.0035 (6)
N20.0305 (9)0.0185 (8)0.0378 (9)0.0036 (6)0.0075 (7)0.0033 (7)
N30.0322 (9)0.0184 (8)0.0316 (9)0.0024 (6)0.0069 (7)0.0046 (6)
N40.0246 (8)0.0159 (7)0.0255 (8)0.0000 (6)0.0090 (6)0.0004 (6)
N50.0272 (8)0.0247 (8)0.0275 (8)0.0031 (6)0.0062 (7)0.0011 (6)
C10.0258 (9)0.0145 (8)0.0210 (8)0.0001 (7)0.0088 (7)0.0007 (6)
C20.0307 (10)0.0197 (9)0.0255 (9)0.0023 (7)0.0054 (8)0.0018 (7)
C30.0274 (10)0.0267 (10)0.0356 (11)0.0001 (8)0.0016 (8)0.0027 (8)
C40.0283 (10)0.0254 (10)0.0405 (11)0.0076 (8)0.0111 (9)0.0034 (8)
C50.0311 (10)0.0186 (9)0.0310 (10)0.0034 (7)0.0136 (8)0.0004 (7)
C60.0262 (9)0.0135 (8)0.0211 (8)0.0001 (6)0.0097 (7)0.0005 (6)
C70.0264 (9)0.0159 (8)0.0193 (8)0.0014 (7)0.0093 (7)0.0012 (6)
C80.0364 (10)0.0225 (9)0.0208 (9)0.0051 (8)0.0103 (8)0.0023 (7)
C90.0358 (11)0.0339 (11)0.0235 (9)0.0115 (9)0.0034 (8)0.0004 (8)
C100.0246 (9)0.0359 (11)0.0334 (11)0.0032 (8)0.0052 (8)0.0080 (9)
C110.0255 (9)0.0255 (10)0.0333 (10)0.0024 (8)0.0113 (8)0.0048 (8)
C120.0241 (9)0.0167 (8)0.0221 (8)0.0010 (7)0.0088 (7)0.0023 (7)
C130.0352 (10)0.0146 (8)0.0281 (9)0.0004 (7)0.0165 (8)0.0033 (7)
C140.0311 (10)0.0159 (9)0.0351 (10)0.0005 (7)0.0162 (8)0.0016 (7)
C150.0253 (9)0.0138 (8)0.0317 (10)0.0003 (7)0.0118 (8)0.0014 (7)
C160.0305 (9)0.0152 (8)0.0274 (9)0.0011 (7)0.0138 (8)0.0019 (7)
S2A0.0371 (4)0.0254 (4)0.0298 (4)0.0003 (3)0.0050 (3)0.0024 (3)
O1A0.0453 (12)0.0199 (12)0.0377 (14)0.0026 (9)0.0016 (11)0.0041 (9)
C17A0.0335 (14)0.0370 (13)0.0405 (17)0.0039 (10)0.0097 (13)0.0086 (12)
C18A0.0376 (16)0.037 (4)0.064 (3)0.0008 (19)0.0012 (19)0.020 (4)
S2B0.0371 (4)0.0254 (4)0.0298 (4)0.0003 (3)0.0050 (3)0.0024 (3)
O1B0.0453 (12)0.0199 (12)0.0377 (14)0.0026 (9)0.0016 (11)0.0041 (9)
C17B0.0335 (14)0.0370 (13)0.0405 (17)0.0039 (10)0.0097 (13)0.0086 (12)
C18B0.0376 (16)0.037 (4)0.064 (3)0.0008 (19)0.0012 (19)0.020 (4)
Geometric parameters (Å, º) top
S1—C161.6776 (19)C9—H90.9500
N1—C11.386 (2)C10—C111.383 (3)
N1—C121.386 (2)C10—H100.9500
N1—C131.450 (2)C11—C121.396 (3)
N2—C151.302 (3)C11—H110.9500
N2—N31.386 (2)C13—C141.533 (3)
N3—C161.334 (3)C13—H13A0.9900
N3—H3A0.9100C13—H13B0.9900
N4—C161.373 (2)C14—C151.488 (3)
N4—C151.373 (2)C14—H14A0.9900
N4—N51.399 (2)C14—H14B0.9900
N5—H5A0.9100S2A—O1A1.500 (2)
N5—H5B0.9100S2A—C18A1.768 (7)
C1—C21.390 (3)S2A—C17A1.778 (7)
C1—C61.415 (2)C17A—H17A0.9800
C2—C31.385 (3)C17A—H17B0.9800
C2—H20.9500C17A—H17C0.9800
C3—C41.401 (3)C18A—H18A0.9800
C3—H30.9500C18A—H18B0.9800
C4—C51.384 (3)C18A—H18C0.9800
C4—H40.9500S2B—O1B1.512 (3)
C5—C61.399 (3)S2B—C18B1.772 (8)
C5—H50.9500S2B—C17B1.781 (8)
C6—C71.443 (3)C17B—H17D0.9800
C7—C81.400 (3)C17B—H17E0.9800
C7—C121.412 (2)C17B—H17F0.9800
C8—C91.383 (3)C18B—H18D0.9800
C8—H80.9500C18B—H18E0.9800
C9—C101.398 (3)C18B—H18F0.9800
C1—N1—C12108.88 (14)N1—C13—C14112.40 (15)
C1—N1—C13124.54 (15)N1—C13—H13A109.1
C12—N1—C13126.43 (16)C14—C13—H13A109.1
C15—N2—N3103.85 (16)N1—C13—H13B109.1
C16—N3—N2113.64 (16)C14—C13—H13B109.1
C16—N3—H3A124.3H13A—C13—H13B107.9
N2—N3—H3A121.8C15—C14—C13110.45 (15)
C16—N4—C15108.80 (16)C15—C14—H14A109.6
C16—N4—N5127.16 (16)C13—C14—H14A109.6
C15—N4—N5124.04 (15)C15—C14—H14B109.6
N4—N5—H5A105.5C13—C14—H14B109.6
N4—N5—H5B106.2H14A—C14—H14B108.1
H5A—N5—H5B108.7N2—C15—N4110.67 (16)
N1—C1—C2129.28 (17)N2—C15—C14126.79 (17)
N1—C1—C6108.93 (15)N4—C15—C14122.47 (17)
C2—C1—C6121.78 (17)N3—C16—N4103.03 (16)
C3—C2—C1117.48 (18)N3—C16—S1130.04 (15)
C3—C2—H2121.3N4—C16—S1126.93 (15)
C1—C2—H2121.3O1A—S2A—C18A107.6 (5)
C2—C3—C4121.76 (19)O1A—S2A—C17A107.6 (6)
C2—C3—H3119.1C18A—S2A—C17A99.0 (4)
C4—C3—H3119.1S2A—C17A—H17A109.5
C5—C4—C3120.59 (18)S2A—C17A—H17B109.5
C5—C4—H4119.7H17A—C17A—H17B109.5
C3—C4—H4119.7S2A—C17A—H17C109.5
C4—C5—C6118.93 (18)H17A—C17A—H17C109.5
C4—C5—H5120.5H17B—C17A—H17C109.5
C6—C5—H5120.5S2A—C18A—H18A109.5
C5—C6—C1119.44 (17)S2A—C18A—H18B109.5
C5—C6—C7134.08 (17)H18A—C18A—H18B109.5
C1—C6—C7106.48 (15)S2A—C18A—H18C109.5
C8—C7—C12119.46 (17)H18A—C18A—H18C109.5
C8—C7—C6133.64 (17)H18B—C18A—H18C109.5
C12—C7—C6106.89 (15)O1B—S2B—C18B106.1 (6)
C9—C8—C7118.81 (19)O1B—S2B—C17B106.7 (7)
C9—C8—H8120.6C18B—S2B—C17B98.6 (5)
C7—C8—H8120.6S2B—C17B—H17D109.5
C8—C9—C10120.90 (19)S2B—C17B—H17E109.5
C8—C9—H9119.6H17D—C17B—H17E109.5
C10—C9—H9119.6S2B—C17B—H17F109.5
C11—C10—C9121.68 (19)H17D—C17B—H17F109.5
C11—C10—H10119.2H17E—C17B—H17F109.5
C9—C10—H10119.2S2B—C18B—H18D109.5
C10—C11—C12117.43 (19)S2B—C18B—H18E109.5
C10—C11—H11121.3H18D—C18B—H18E109.5
C12—C11—H11121.3S2B—C18B—H18F109.5
N1—C12—C11129.45 (17)H18D—C18B—H18F109.5
N1—C12—C7108.81 (15)H18E—C18B—H18F109.5
C11—C12—C7121.72 (17)
C15—N2—N3—C160.2 (2)C13—N1—C12—C116.5 (3)
C12—N1—C1—C2178.40 (18)C1—N1—C12—C70.4 (2)
C13—N1—C1—C25.8 (3)C13—N1—C12—C7175.25 (16)
C12—N1—C1—C60.7 (2)C10—C11—C12—N1178.21 (18)
C13—N1—C1—C6175.03 (15)C10—C11—C12—C70.1 (3)
N1—C1—C2—C3179.56 (18)C8—C7—C12—N1178.85 (16)
C6—C1—C2—C30.5 (3)C6—C7—C12—N10.05 (19)
C1—C2—C3—C40.6 (3)C8—C7—C12—C110.4 (3)
C2—C3—C4—C51.2 (3)C6—C7—C12—C11178.51 (17)
C3—C4—C5—C60.6 (3)C1—N1—C13—C1475.0 (2)
C4—C5—C6—C10.5 (3)C12—N1—C13—C14100.0 (2)
C4—C5—C6—C7178.90 (19)N1—C13—C14—C15179.99 (15)
N1—C1—C6—C5179.69 (16)N3—N2—C15—N40.2 (2)
C2—C1—C6—C51.1 (3)N3—N2—C15—C14177.15 (18)
N1—C1—C6—C70.75 (19)C16—N4—C15—N20.4 (2)
C2—C1—C6—C7178.46 (17)N5—N4—C15—N2179.78 (16)
C5—C6—C7—C81.3 (4)C16—N4—C15—C14177.57 (16)
C1—C6—C7—C8178.19 (19)N5—N4—C15—C143.1 (3)
C5—C6—C7—C12179.95 (19)C13—C14—C15—N299.2 (2)
C1—C6—C7—C120.49 (19)C13—C14—C15—N477.4 (2)
C12—C7—C8—C90.3 (3)N2—N3—C16—N40.4 (2)
C6—C7—C8—C9178.20 (19)N2—N3—C16—S1179.43 (14)
C7—C8—C9—C100.0 (3)C15—N4—C16—N30.49 (19)
C8—C9—C10—C110.3 (3)N5—N4—C16—N3179.81 (16)
C9—C10—C11—C120.2 (3)C15—N4—C16—S1179.35 (14)
C1—N1—C12—C11177.88 (18)N5—N4—C16—S10.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the six-membered ring of the carbazole moiety.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1Ai0.911.922.818 (3)171
N3—H3A···O1Bi0.911.922.758 (4)153
N5—H5B···S1ii0.912.513.3500 (17)154
C17A—H17C···O1Aiii0.982.433.242 (15)140
C5—H5···Cg4iv0.952.543.452 (2)161
N5—H5A···Cg4i0.912.603.2718 (18)131
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBekircan, O. & Bektas, H. (2006). Molecules, 11, 469–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDundar, Y., Cakir, B., Kupeli, E., Sahin, M. & Noyanalpan, N. (2007). Turk. J. Chem. 31, 301–313.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds