organic compounds
Diethyl 2,2′-(trisulfane-1,3-diyl)dibenzoate
aDepartment of Chemistry, University of Constantine, BP, 325 Route de Ain El Bey, Constantine 25017, Algeria, and bC2P2 (CNRS–UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France
*Correspondence e-mail: boukebbous.khaled@gmail.com
The title compound, C18H18O4S3, was synthesized in the presence of chloridoauric acid from 3H-1,2-benzodithiole-3-thione as starting material. The comprises one half of the molecule, the complete molecule being generated by the application of twofold rotation symmetry. The two benzene rings are inclined by 81.0 (2)°. In the crystal, slipped π–π stacking interactions are observed between the benzene rings of neighbouring molecules.
Keywords: crystal structure; dithiolethione derivatives; sulfur organic compounds; 1,2-dithiole-3-thiones; reactivity; benzoate compounds.
CCDC reference: 1511354
Structure description
3H-1,2-Benzodithiole-3-thione is a representative of 1,2-dithiole-3-thiones that define a bioactive family of compounds (Li et al., 2016; Russell et al., 2015). A bimolecular condensation reaction of 3H-1,2-benzodithiole-3-thione produced the title compound. The half-molecule present in the is almost planar, with the maximum deviation being 0.114 (4) Å involving the carbonyl O atom of the ester group. The two equivalent S—S bond lengths of 2.0434 (17) Å and the S—S—S angle of 106.91 (11)° are typical for trisulfanyl groups (Fig. 1). The bent molecules are stacked along the b axis and interact through slightly displaced π–π stacking interactions [plane-to-plane separation between parallel benzene rings = 3.371 (7) Å] (Fig. 2).
Synthesis and crystallization
The title compound was prepared by a condensation reaction of two 3H-1,2-benzodithiole-3-thione molecules in the presence of HAuCl4·3H2O in ethanol. 3H-1,2-Benzodithiole-3-thione (90 mg) dissolved in 10 ml of absolute ethanol was added to 200 mg of HAuCl4·3H2O dissolved in 10 ml of THF. The mixture was stirred for 1 h under reflux, cooled to room temperature and left undisturbed for several hours. After filtration, the remaining solution was evaporated and the product dissolved in diethyl ether from which crystals of the title compound were harvested after 5 d.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1511354
https://doi.org/10.1107/S2414314616017089/wm4032sup1.cif
contains datablocks global, New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616017089/wm4032Isup2.hkl
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C18H18O4S3 | F(000) = 824 |
Mr = 394.54 | Dx = 1.493 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1198 reflections |
a = 15.071 (3) Å | θ = 4.9–27.5° |
b = 4.4304 (11) Å | µ = 0.44 mm−1 |
c = 27.422 (9) Å | T = 150 K |
β = 106.59 (3)° | Lath, light yellow |
V = 1754.8 (8) Å3 | 0.44 × 0.19 × 0.10 mm |
Z = 4 |
Rigaku OF Xcalibur Atlas Gemini ultra diffractometer | 2177 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1653 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.058 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 30.0°, θmin = 3.6° |
ω scans | h = −19→20 |
Absorption correction: analytical (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | k = −6→6 |
Tmin = 0.872, Tmax = 0.963 | l = −37→37 |
6690 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.079 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.372E + 04 0.520E + 04 0.373E + 04 0.166E + 04 752. |
wR(F2) = 0.166 | (Δ/σ)max = 0.0002161 |
S = 1.00 | Δρmax = 0.89 e Å−3 |
2175 reflections | Δρmin = −1.00 e Å−3 |
142 parameters | Extinction correction: Larson (1970), Equation 22 |
0 restraints | Extinction coefficient: 29 (8) |
Primary atom site location: other |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K. Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107. |
Refinement. Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2-1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010). Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3715 (3) | 1.0334 (11) | 0.67128 (17) | 0.0268 | |
C2 | 0.3092 (3) | 1.1298 (12) | 0.69705 (18) | 0.0321 | |
C3 | 0.2187 (3) | 1.0225 (12) | 0.6825 (2) | 0.0339 | |
C4 | 0.1900 (3) | 0.8208 (14) | 0.6436 (2) | 0.0386 | |
C5 | 0.2512 (3) | 0.7263 (12) | 0.61804 (19) | 0.0336 | |
C6 | 0.3420 (3) | 0.8314 (11) | 0.63087 (16) | 0.0279 | |
C7 | 0.4044 (3) | 0.7398 (10) | 0.60108 (17) | 0.0263 | |
C8 | 0.4233 (3) | 0.4435 (13) | 0.5337 (2) | 0.0342 | |
C9 | 0.3649 (4) | 0.2518 (13) | 0.4921 (2) | 0.0364 | |
S1 | 0.5000 | 1.4389 (4) | 0.7500 | 0.0320 | |
S2 | 0.48814 (8) | 1.1643 (3) | 0.68860 (4) | 0.0297 | |
O2 | 0.3662 (2) | 0.5346 (8) | 0.56525 (12) | 0.0319 | |
O1 | 0.4814 (2) | 0.8383 (9) | 0.60692 (12) | 0.0349 | |
H21 | 0.330 (4) | 1.268 (13) | 0.726 (2) | 0.0389* | |
H31 | 0.181 (4) | 1.099 (13) | 0.702 (2) | 0.0410* | |
H41 | 0.127 (4) | 0.736 (14) | 0.632 (2) | 0.0459* | |
H51 | 0.229 (4) | 0.568 (13) | 0.589 (2) | 0.0403* | |
H81 | 0.473 (4) | 0.340 (13) | 0.554 (2) | 0.0408* | |
H82 | 0.444 (4) | 0.637 (14) | 0.520 (2) | 0.0408* | |
H91 | 0.402 (4) | 0.177 (15) | 0.468 (2) | 0.0548* | |
H92 | 0.341 (4) | 0.065 (16) | 0.504 (2) | 0.0551* | |
H93 | 0.314 (4) | 0.370 (15) | 0.471 (2) | 0.0548* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0220 (19) | 0.027 (2) | 0.033 (2) | 0.0025 (18) | 0.0097 (17) | 0.0072 (19) |
C2 | 0.030 (2) | 0.035 (3) | 0.033 (2) | 0.001 (2) | 0.0129 (19) | 0.002 (2) |
C3 | 0.028 (2) | 0.036 (3) | 0.043 (3) | 0.003 (2) | 0.019 (2) | 0.006 (2) |
C4 | 0.025 (2) | 0.051 (3) | 0.041 (3) | −0.005 (2) | 0.0115 (19) | 0.002 (3) |
C5 | 0.027 (2) | 0.038 (3) | 0.036 (2) | −0.003 (2) | 0.0108 (19) | 0.002 (2) |
C6 | 0.025 (2) | 0.029 (2) | 0.030 (2) | −0.003 (2) | 0.0088 (17) | 0.002 (2) |
C7 | 0.0258 (19) | 0.023 (2) | 0.029 (2) | −0.0018 (17) | 0.0071 (17) | 0.0015 (17) |
C8 | 0.029 (2) | 0.037 (3) | 0.041 (3) | −0.004 (2) | 0.017 (2) | −0.003 (2) |
C9 | 0.033 (2) | 0.035 (3) | 0.041 (3) | −0.005 (2) | 0.012 (2) | −0.009 (2) |
S1 | 0.0334 (8) | 0.0258 (9) | 0.0365 (9) | 0.0000 | 0.0094 (7) | 0.0000 |
S2 | 0.0251 (5) | 0.0321 (7) | 0.0327 (6) | −0.0028 (5) | 0.0098 (4) | 0.0001 (5) |
O2 | 0.0285 (15) | 0.0348 (19) | 0.0346 (17) | −0.0071 (15) | 0.0127 (13) | −0.0075 (15) |
O1 | 0.0261 (15) | 0.042 (2) | 0.0384 (17) | −0.0040 (15) | 0.0120 (13) | −0.0035 (17) |
C1—C2 | 1.394 (6) | C7—O2 | 1.342 (5) |
C1—C6 | 1.395 (6) | C7—O1 | 1.208 (5) |
C1—S2 | 1.782 (4) | C8—C9 | 1.490 (7) |
C2—C3 | 1.390 (6) | C8—O2 | 1.442 (5) |
C2—H21 | 0.98 (5) | C8—H81 | 0.92 (6) |
C3—C4 | 1.364 (8) | C8—H82 | 1.02 (6) |
C3—H31 | 0.95 (5) | C9—H91 | 1.02 (6) |
C4—C5 | 1.373 (7) | C9—H92 | 0.99 (7) |
C4—H41 | 0.99 (6) | C9—H93 | 0.97 (6) |
C5—C6 | 1.393 (6) | S1—S2i | 2.0434 (17) |
C5—H51 | 1.05 (6) | S1—S2 | 2.0434 (17) |
C6—C7 | 1.467 (6) | ||
C2—C1—C6 | 119.4 (4) | C6—C7—O2 | 112.7 (4) |
C2—C1—S2 | 121.4 (4) | C6—C7—O1 | 124.8 (4) |
C6—C1—S2 | 119.1 (3) | O2—C7—O1 | 122.5 (4) |
C1—C2—C3 | 119.8 (5) | C9—C8—O2 | 107.2 (4) |
C1—C2—H21 | 120 (3) | C9—C8—H81 | 112 (4) |
C3—C2—H21 | 120 (3) | O2—C8—H81 | 108 (3) |
C2—C3—C4 | 121.0 (4) | C9—C8—H82 | 112 (3) |
C2—C3—H31 | 115 (3) | O2—C8—H82 | 107 (3) |
C4—C3—H31 | 124 (3) | H81—C8—H82 | 111 (4) |
C3—C4—C5 | 119.3 (5) | C8—C9—H91 | 111 (3) |
C3—C4—H41 | 124 (3) | C8—C9—H92 | 115 (4) |
C5—C4—H41 | 117 (3) | H91—C9—H92 | 104 (5) |
C4—C5—C6 | 121.6 (5) | C8—C9—H93 | 110 (4) |
C4—C5—H51 | 119 (3) | H91—C9—H93 | 106 (5) |
C6—C5—H51 | 120 (3) | H92—C9—H93 | 110 (5) |
C1—C6—C5 | 118.8 (4) | S2i—S1—S2 | 106.91 (11) |
C1—C6—C7 | 120.7 (4) | C1—S2—S1 | 105.12 (16) |
C5—C6—C7 | 120.4 (4) | C8—O2—C7 | 115.1 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Acknowledgements
We acknowledge The French National Center for Scientific Research (CNRS) for financial support.
References
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Li, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. & Cao, C. (2016). Sci. Rep. 6, 13. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England. Google Scholar
Russell, G. K., Gupta, R. C. & Vadhanam, M. V. (2015). Mutat. Res./Fundam. Mol. Mech. Mutagen. 774, 25–32. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.