organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 2,2′-(tris­­ulfane-1,3-di­yl)dibenzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Constantine, BP, 325 Route de Ain El Bey, Constantine 25017, Algeria, and bC2P2 (CNRS–UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France
*Correspondence e-mail: boukebbous.khaled@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 October 2016; accepted 24 October 2016; online 4 November 2016)

The title compound, C18H18O4S3, was synthesized in the presence of chlorido­auric acid from 3H-1,2-benzodithiole-3-thione as starting material. The asymmetric unit comprises one half of the mol­ecule, the complete mol­ecule being generated by the application of twofold rotation symmetry. The two benzene rings are inclined by 81.0 (2)°. In the crystal, slipped ππ stacking inter­actions are observed between the benzene rings of neighbouring mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

3H-1,2-Benzodithiole-3-thione is a representative of 1,2-di­thiole-3-thio­nes that define a bioactive family of compounds (Li et al., 2016[Li, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. & Cao, C. (2016). Sci. Rep. 6, 13.]; Russell et al., 2015[Russell, G. K., Gupta, R. C. & Vadhanam, M. V. (2015). Mutat. Res./Fundam. Mol. Mech. Mutagen. 774, 25-32.]). A bimolecular condensation reaction of 3H-1,2-benzodithiole-3-thione produced the title compound. The half-mol­ecule present in the asymmetric unit is almost planar, with the maximum deviation being 0.114 (4) Å involving the carbonyl O atom of the ester group. The two equivalent S—S bond lengths of 2.0434 (17) Å and the S—S—S angle of 106.91 (11)° are typical for tris­ulfanyl groups (Fig. 1[link]). The bent mol­ecules are stacked along the b axis and inter­act through slightly displaced ππ stacking inter­actions [plane-to-plane separation between parallel benzene rings = 3.371 (7) Å] (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. Unlabelled atoms are related to the labelled atoms by symmetry code (−x + 1, y, −z + [{3\over 2}]).
[Figure 2]
Figure 2
The packing of the mol­ecules in the title structure in a view along the a axis, showing ππ stacking inter­actions as dashed blue lines.

Synthesis and crystallization

The title compound was prepared by a condensation reaction of two 3H-1,2-benzodithiole-3-thione mol­ecules in the presence of HAuCl4·3H2O in ethanol. 3H-1,2-Benzodithiole-3-thione (90 mg) dissolved in 10 ml of absolute ethanol was added to 200 mg of HAuCl4·3H2O dissolved in 10 ml of THF. The mixture was stirred for 1 h under reflux, cooled to room temperature and left undisturbed for several hours. After filtration, the remaining solution was evaporated and the product dissolved in diethyl ether from which crystals of the title compound were harvested after 5 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C18H18O4S3
Mr 394.54
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 15.071 (3), 4.4304 (11), 27.422 (9)
β (°) 106.59 (3)
V3) 1754.8 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.44 × 0.19 × 0.10
 
Data collection
Diffractometer Rigaku OF Xcalibur Atlas Gemini ultra
Absorption correction Analytical (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.872, 0.963
No. of measured, independent and observed [I > 2.0σ(I)] reflections 6690, 2177, 1653
Rint 0.058
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.166, 1.00
No. of reflections 2175
No. of parameters 142
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.89, −1.00
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

(I) top
Crystal data top
C18H18O4S3F(000) = 824
Mr = 394.54Dx = 1.493 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1198 reflections
a = 15.071 (3) Åθ = 4.9–27.5°
b = 4.4304 (11) ŵ = 0.44 mm1
c = 27.422 (9) ÅT = 150 K
β = 106.59 (3)°Lath, light yellow
V = 1754.8 (8) Å30.44 × 0.19 × 0.10 mm
Z = 4
Data collection top
Rigaku OF Xcalibur Atlas Gemini ultra
diffractometer
2177 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1653 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 10.4685 pixels mm-1θmax = 30.0°, θmin = 3.6°
ω scansh = 1920
Absorption correction: analytical
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 66
Tmin = 0.872, Tmax = 0.963l = 3737
6690 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.079 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.372E + 04 0.520E + 04 0.373E + 04 0.166E + 04 752.
wR(F2) = 0.166(Δ/σ)max = 0.0002161
S = 1.00Δρmax = 0.89 e Å3
2175 reflectionsΔρmin = 1.00 e Å3
142 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 29 (8)
Primary atom site location: other
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Refinement. Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2-1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3715 (3)1.0334 (11)0.67128 (17)0.0268
C20.3092 (3)1.1298 (12)0.69705 (18)0.0321
C30.2187 (3)1.0225 (12)0.6825 (2)0.0339
C40.1900 (3)0.8208 (14)0.6436 (2)0.0386
C50.2512 (3)0.7263 (12)0.61804 (19)0.0336
C60.3420 (3)0.8314 (11)0.63087 (16)0.0279
C70.4044 (3)0.7398 (10)0.60108 (17)0.0263
C80.4233 (3)0.4435 (13)0.5337 (2)0.0342
C90.3649 (4)0.2518 (13)0.4921 (2)0.0364
S10.50001.4389 (4)0.75000.0320
S20.48814 (8)1.1643 (3)0.68860 (4)0.0297
O20.3662 (2)0.5346 (8)0.56525 (12)0.0319
O10.4814 (2)0.8383 (9)0.60692 (12)0.0349
H210.330 (4)1.268 (13)0.726 (2)0.0389*
H310.181 (4)1.099 (13)0.702 (2)0.0410*
H410.127 (4)0.736 (14)0.632 (2)0.0459*
H510.229 (4)0.568 (13)0.589 (2)0.0403*
H810.473 (4)0.340 (13)0.554 (2)0.0408*
H820.444 (4)0.637 (14)0.520 (2)0.0408*
H910.402 (4)0.177 (15)0.468 (2)0.0548*
H920.341 (4)0.065 (16)0.504 (2)0.0551*
H930.314 (4)0.370 (15)0.471 (2)0.0548*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (19)0.027 (2)0.033 (2)0.0025 (18)0.0097 (17)0.0072 (19)
C20.030 (2)0.035 (3)0.033 (2)0.001 (2)0.0129 (19)0.002 (2)
C30.028 (2)0.036 (3)0.043 (3)0.003 (2)0.019 (2)0.006 (2)
C40.025 (2)0.051 (3)0.041 (3)0.005 (2)0.0115 (19)0.002 (3)
C50.027 (2)0.038 (3)0.036 (2)0.003 (2)0.0108 (19)0.002 (2)
C60.025 (2)0.029 (2)0.030 (2)0.003 (2)0.0088 (17)0.002 (2)
C70.0258 (19)0.023 (2)0.029 (2)0.0018 (17)0.0071 (17)0.0015 (17)
C80.029 (2)0.037 (3)0.041 (3)0.004 (2)0.017 (2)0.003 (2)
C90.033 (2)0.035 (3)0.041 (3)0.005 (2)0.012 (2)0.009 (2)
S10.0334 (8)0.0258 (9)0.0365 (9)0.00000.0094 (7)0.0000
S20.0251 (5)0.0321 (7)0.0327 (6)0.0028 (5)0.0098 (4)0.0001 (5)
O20.0285 (15)0.0348 (19)0.0346 (17)0.0071 (15)0.0127 (13)0.0075 (15)
O10.0261 (15)0.042 (2)0.0384 (17)0.0040 (15)0.0120 (13)0.0035 (17)
Geometric parameters (Å, º) top
C1—C21.394 (6)C7—O21.342 (5)
C1—C61.395 (6)C7—O11.208 (5)
C1—S21.782 (4)C8—C91.490 (7)
C2—C31.390 (6)C8—O21.442 (5)
C2—H210.98 (5)C8—H810.92 (6)
C3—C41.364 (8)C8—H821.02 (6)
C3—H310.95 (5)C9—H911.02 (6)
C4—C51.373 (7)C9—H920.99 (7)
C4—H410.99 (6)C9—H930.97 (6)
C5—C61.393 (6)S1—S2i2.0434 (17)
C5—H511.05 (6)S1—S22.0434 (17)
C6—C71.467 (6)
C2—C1—C6119.4 (4)C6—C7—O2112.7 (4)
C2—C1—S2121.4 (4)C6—C7—O1124.8 (4)
C6—C1—S2119.1 (3)O2—C7—O1122.5 (4)
C1—C2—C3119.8 (5)C9—C8—O2107.2 (4)
C1—C2—H21120 (3)C9—C8—H81112 (4)
C3—C2—H21120 (3)O2—C8—H81108 (3)
C2—C3—C4121.0 (4)C9—C8—H82112 (3)
C2—C3—H31115 (3)O2—C8—H82107 (3)
C4—C3—H31124 (3)H81—C8—H82111 (4)
C3—C4—C5119.3 (5)C8—C9—H91111 (3)
C3—C4—H41124 (3)C8—C9—H92115 (4)
C5—C4—H41117 (3)H91—C9—H92104 (5)
C4—C5—C6121.6 (5)C8—C9—H93110 (4)
C4—C5—H51119 (3)H91—C9—H93106 (5)
C6—C5—H51120 (3)H92—C9—H93110 (5)
C1—C6—C5118.8 (4)S2i—S1—S2106.91 (11)
C1—C6—C7120.7 (4)C1—S2—S1105.12 (16)
C5—C6—C7120.4 (4)C8—O2—C7115.1 (3)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

We acknowledge The French National Center for Scientific Research (CNRS) for financial support.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. & Cao, C. (2016). Sci. Rep. 6, 13.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationRussell, G. K., Gupta, R. C. & Vadhanam, M. V. (2015). Mutat. Res./Fundam. Mol. Mech. Mutagen. 774, 25–32.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds