metal-organic compounds
Redetermination of diaqua[N,N′-bis(3-methoxy-2-oxidobenzylidene)ethylenediamine-κ4O,N,N′,O′]manganese(III) perchlorate at 100 K
aDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002, India, bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany, and cFaculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
*Correspondence e-mail: shabanachem0711@gmail.com, s.kumar@msn.com
The 18H18N2O4)(H2O)2]ClO4, has been redetermined at 100 K. In contrast to the determinations at room temperature [Akitsu et al. (2005). Acta Cryst. C61, m324–m328; Bermejo et al. (2007). Eur. J. Inorg. Chem. pp. 3789–3797], positional disorder of the ethylene bridge in the Schiff base ligand and the perchlorate anion is not observed at 100 K. The MnIII ion is six-coordinated with the tetradentate Schiff base chelate ligand N,N′-bis(3-methoxy-2-oxybenzylidene)ethylenediamine occupying coordination sites in the equatorial plane and the aqua ligands residing in the two axial positions. The octahedral coordination sphere of the MnIII ion exhibits an axial elongation due to the Jahn–Teller effect, which is characteristic of a d4 high-spin electronic configuration.
of the organic–inorganic title salt, [Mn(CKeywords: crystal structure; redetermination; Jahn–Teller effect; manganese(III) coordination complex.
CCDC reference: 1512691
Structure description
Transition metal complexes of ). Schiff base complexes find application in a variety of catalytic transformations as they have the ability to coordinate to metal ions and stabilize unusual oxidation states. Metal complexes containing salen-type are important owing to their resemblance to metallopropyrins with respect to their electronic structure and catalytic activities in the way that they mimic enzymatic oxidations (Groves, 2005). Interest in the coordination chemistry of manganese complexes in high oxidation states is largely centred on the preparation of functional models of manganese-containing biological systems, such as SOD (Bull et al., 1991) and azide-sensitive catalases (Dismukes, 1996). In addition, the catalytic properties of manganese complexes in organic processes, e.g. in the enantioselective epoxidation of (Zhang et al., 1990) make manganese chemistry an attractive area of research.
show an interesting chemistry, including various aspects of organometallic and bioinorganic chemistry (Yamada, 1999The cationic complex in the title salt shows a distorted octahedral environment around the MnIII ion. The Schiff base ligand behaves as a tetradentate chelate ligand with two nitrogen atoms, N1 and N2, and two oxygen atoms, O1 and O2, occupying the equatorial plane (Fig. 1). O5 and O6 of the coordinating water molecules occupy the two axial positions, whereby the axial Mn—O bonds are elongated owing to the Jahn-Teller effect, which is characteristic of the d4 Magnetochemical characterization revealed a d4 high-spin configuration (S = 2) of the complex (Akitsu et al., 2005).
In the crystal, two cationic complexes form a centrosymmetric hydrogen-bonded dimer, in which an aqua ligand of one complex forms two bifurcated hydrogen bonds to the oxygen atoms of the chelate ligand in the symmetry-related complex (Fig. 2). The second aqua ligand forms hydrogen bonds to the oxygen atoms of two perchlorate anions. Hydrogen-bond details are listed in Table 1.
The structure of the title compound has been previously determined at room temperature by others [Akitsu et al., 2005; Bermejo et al., 2007; refcodes in the Cambridge Structural Database (CSD; Groom et al., 2016): TAPSOT and TAPSOT01, respectively]. It should be noted that the authors of TAPSOT01 (Bermejo et al., 2007) described the compound as a monohydrate in the experimental section of the corresponding article (`compound 2'), although TAPSOT in the CSD and also the crystallographic data listed in the article clearly correspond to the unsolvated complex. The of the corresponding monohydrate (CSD refcode: MAXSEJ) was, however, reported by Zhang et al. (2000), although these authors inconsistently described the compound as a dihydrate. At room temperature, i.e. in TAPSOT and TAPSOT01, the ethylene bridge exhibits positional disorder, which is not observed at 100 K. The perchlorate anion was also found to be disordered at room temperature. The authors of TAPSOT (Akitsu et al., 2005) treated the disorder with elongated atom displacement ellipsoids, whereas the authors of TAPSOT01 (Bermejo et al., 2007) preferred to use a split-atom model. At 100 K there is also no evidence for significant disorder of the perchlorate anion. Apart from the non-observed disorder, the redetermination of the at 100 K led to a significant improvement of the quality indicators and bond precision as compared with TAPSOT, R1[I>2σ(I)] = 0.0559; bond precision C—C 0.0051 Å, and TAPSOT01, R1[I>2σ(I)] = 0.0444; bond precision C—C = 0.0070 Å.
Synthesis and crystallization
Mn(ClO4)2·6H2O (0.362 g, 1.0 mmol) was mixed with N,N'-bis(3-methoxy-2-oxybenzylidene)ethylenediamine (0.328 g, 1.0 mmol) (Bermejo et al., 2007) and triethylamine (2 mmol, 0.28 ml) in 30 ml of a 2:1 (v/v) acetonitrile/methanol mixture. The reaction mixture was stirred for 6 h at room temperature. Subsequently, the brown solution was left at room temperature, while the solvents were allowed to evaporate slowly. After 3–4 days, brown crystals suitable for X-ray analysis appeared. The crystals were filtered off and washed with cold methanol. Caution: perchlorates are potentially explosive and should be handled in small quantities with care.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1512691
https://doi.org/10.1107/S2414314616017351/wm4031sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616017351/wm4031Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616017351/wm4031Isup3.mol
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Mn(C18H18N2O4)(H2O)2]ClO4 | Dx = 1.680 Mg m−3 |
Mr = 516.76 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9815 reflections |
a = 13.978 (2) Å | θ = 3.2–33.8° |
b = 13.2080 (19) Å | µ = 0.84 mm−1 |
c = 22.137 (3) Å | T = 100 K |
V = 4086.8 (10) Å3 | Plate, brown |
Z = 8 | 0.06 × 0.06 × 0.04 mm |
F(000) = 2128 |
Bruker Kappa Mach3 APEXII diffractometer | 8570 independent reflections |
Radiation source: microfocus X-ray tube, Incoatec IµS | 6786 reflections with I > 2σ(I) |
Incoatec Helios mirrors monochromator | Rint = 0.068 |
Detector resolution: 16.67 pixels mm-1 | θmax = 34.4°, θmin = 3.1° |
φ– and ω–scans | h = −22→22 |
Absorption correction: gaussian (SADABS; Bruker, 2013) | k = −20→20 |
Tmin = 0.957, Tmax = 0.978 | l = −35→35 |
139974 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: mixed |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0383P)2 + 2.5037P] where P = (Fo2 + 2Fc2)/3 |
8570 reflections | (Δ/σ)max < 0.001 |
303 parameters | Δρmax = 0.57 e Å−3 |
4 restraints | Δρmin = −0.57 e Å−3 |
Experimental. Crystal mounted on a MiTeGen loop using Perfluoropolyether PFO-XR75 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Two low-angle reflections were shadowed by the beamstop (002 and 200) and omitted in the final refinement cycles. The positions of aromatic, imine and methylene H atoms were calculated geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C). The C—H bond lengths were set to 0.95 Å for aromatic and imine H atoms and to 0.99 Å for methylene H atoms. For the methyl groups C—H = 0.98 Å was set. The torsion angles of the methyl groups were initially determined using a circular Fourier search and subsequently refined while maintaining the tetrahedral structure. For the methyl groups, Uiso(H) = 1.5Ueq(C) was applied. The water H atoms were located in a difference Fourier map. The O—H bond lengths were restrained to a target value of 0.84 (2) Å and Uiso(H) = 1.2Ueq(O) was set. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.05507 (2) | 0.16542 (2) | 0.02662 (2) | 0.01032 (4) | |
O1 | 0.01911 (6) | 0.13705 (7) | −0.05304 (4) | 0.01327 (16) | |
O3 | −0.06422 (6) | 0.07741 (8) | −0.15036 (4) | 0.01552 (17) | |
O2 | −0.05860 (6) | 0.11266 (7) | 0.05868 (4) | 0.01282 (16) | |
O4 | −0.23082 (6) | 0.05403 (7) | 0.07137 (4) | 0.01419 (16) | |
O5 | −0.02462 (8) | 0.31470 (8) | 0.01391 (5) | 0.02090 (19) | |
H5A | −0.0067 (14) | 0.3651 (13) | 0.0316 (8) | 0.025* | |
H5B | −0.0344 (15) | 0.3299 (15) | −0.0214 (7) | 0.025* | |
O6 | 0.13121 (7) | 0.01671 (7) | 0.03740 (4) | 0.01389 (16) | |
H6A | 0.1025 (12) | −0.0212 (13) | 0.0587 (8) | 0.017* | |
H6B | 0.1363 (13) | −0.0126 (13) | 0.0058 (7) | 0.017* | |
N1 | 0.17881 (7) | 0.22395 (8) | 0.00093 (5) | 0.01278 (18) | |
N2 | 0.10243 (7) | 0.20154 (8) | 0.10813 (5) | 0.01314 (18) | |
C1 | 0.16738 (8) | 0.17524 (9) | −0.10433 (5) | 0.01203 (19) | |
C2 | 0.21723 (9) | 0.17554 (9) | −0.15978 (6) | 0.0142 (2) | |
H2 | 0.2823 | 0.1962 | −0.1608 | 0.017* | |
C3 | 0.17257 (9) | 0.14629 (10) | −0.21217 (6) | 0.0156 (2) | |
H3 | 0.2065 | 0.1478 | −0.2493 | 0.019* | |
C4 | 0.07678 (9) | 0.11406 (10) | −0.21103 (6) | 0.0144 (2) | |
H4 | 0.0458 | 0.0947 | −0.2474 | 0.017* | |
C5 | 0.02787 (8) | 0.11054 (9) | −0.15713 (5) | 0.01208 (19) | |
C6 | 0.07152 (8) | 0.14179 (9) | −0.10239 (5) | 0.01138 (19) | |
C7 | 0.21595 (8) | 0.21480 (9) | −0.05204 (6) | 0.0131 (2) | |
H7 | 0.2805 | 0.2358 | −0.0570 | 0.016* | |
C8 | 0.23024 (9) | 0.27754 (10) | 0.04970 (6) | 0.0160 (2) | |
H8A | 0.2104 | 0.3495 | 0.0510 | 0.019* | |
H8B | 0.3001 | 0.2747 | 0.0425 | 0.019* | |
C9 | −0.04245 (9) | 0.16141 (9) | 0.16346 (5) | 0.0131 (2) | |
C10 | −0.08533 (10) | 0.16185 (10) | 0.22139 (6) | 0.0159 (2) | |
H10 | −0.0507 | 0.1872 | 0.2551 | 0.019* | |
C11 | −0.17650 (10) | 0.12588 (10) | 0.22909 (6) | 0.0173 (2) | |
H11 | −0.2044 | 0.1258 | 0.2682 | 0.021* | |
C12 | −0.22881 (9) | 0.08926 (10) | 0.17972 (6) | 0.0155 (2) | |
H12 | −0.2925 | 0.0661 | 0.1853 | 0.019* | |
C13 | −0.18793 (8) | 0.08685 (9) | 0.12310 (5) | 0.0124 (2) | |
C14 | −0.09280 (8) | 0.12115 (9) | 0.11373 (5) | 0.01138 (19) | |
C15 | 0.05446 (9) | 0.19643 (10) | 0.15778 (6) | 0.0142 (2) | |
H15 | 0.0859 | 0.2176 | 0.1937 | 0.017* | |
C16 | 0.20569 (9) | 0.22573 (11) | 0.10871 (6) | 0.0165 (2) | |
H16A | 0.2437 | 0.1629 | 0.1132 | 0.020* | |
H16B | 0.2206 | 0.2709 | 0.1431 | 0.020* | |
C17 | −0.11436 (9) | 0.05085 (11) | −0.20418 (6) | 0.0181 (2) | |
H17A | −0.1187 | 0.1101 | −0.2307 | 0.027* | |
H17B | −0.1789 | 0.0277 | −0.1938 | 0.027* | |
H17C | −0.0800 | −0.0035 | −0.2251 | 0.027* | |
C18 | −0.32985 (9) | 0.02778 (11) | 0.07497 (7) | 0.0185 (2) | |
H18A | −0.3383 | −0.0274 | 0.1041 | 0.028* | |
H18B | −0.3524 | 0.0059 | 0.0351 | 0.028* | |
H18C | −0.3668 | 0.0869 | 0.0881 | 0.028* | |
Cl1 | 0.07410 (2) | 0.52382 (3) | 0.12199 (2) | 0.01738 (6) | |
O7 | 0.05549 (8) | 0.48739 (9) | 0.06149 (5) | 0.0266 (2) | |
O8 | 0.00029 (9) | 0.48986 (13) | 0.16163 (6) | 0.0404 (3) | |
O9 | 0.07464 (9) | 0.63287 (9) | 0.11931 (6) | 0.0325 (3) | |
O10 | 0.16496 (8) | 0.48708 (10) | 0.14218 (6) | 0.0288 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.00933 (7) | 0.01206 (8) | 0.00956 (8) | −0.00203 (6) | 0.00013 (6) | −0.00028 (6) |
O1 | 0.0120 (4) | 0.0182 (4) | 0.0096 (4) | −0.0041 (3) | 0.0015 (3) | 0.0006 (3) |
O3 | 0.0123 (4) | 0.0229 (4) | 0.0113 (4) | −0.0044 (3) | −0.0005 (3) | 0.0000 (3) |
O2 | 0.0114 (4) | 0.0165 (4) | 0.0105 (4) | −0.0026 (3) | 0.0026 (3) | −0.0017 (3) |
O4 | 0.0102 (4) | 0.0183 (4) | 0.0142 (4) | −0.0026 (3) | 0.0007 (3) | 0.0004 (3) |
O5 | 0.0237 (5) | 0.0151 (4) | 0.0240 (5) | 0.0021 (4) | −0.0028 (4) | 0.0011 (4) |
O6 | 0.0146 (4) | 0.0139 (4) | 0.0132 (4) | −0.0011 (3) | 0.0025 (3) | −0.0005 (3) |
N1 | 0.0119 (4) | 0.0127 (4) | 0.0137 (4) | −0.0024 (3) | −0.0007 (3) | 0.0006 (4) |
N2 | 0.0117 (4) | 0.0143 (4) | 0.0134 (4) | −0.0007 (3) | −0.0015 (3) | −0.0015 (4) |
C1 | 0.0118 (5) | 0.0113 (5) | 0.0129 (5) | −0.0008 (4) | 0.0017 (4) | 0.0017 (4) |
C2 | 0.0129 (5) | 0.0144 (5) | 0.0155 (5) | −0.0007 (4) | 0.0035 (4) | 0.0017 (4) |
C3 | 0.0156 (5) | 0.0172 (5) | 0.0140 (5) | 0.0000 (4) | 0.0047 (4) | 0.0016 (4) |
C4 | 0.0154 (5) | 0.0155 (5) | 0.0123 (5) | 0.0005 (4) | 0.0010 (4) | 0.0013 (4) |
C5 | 0.0118 (4) | 0.0131 (5) | 0.0114 (5) | −0.0004 (4) | 0.0001 (4) | 0.0011 (4) |
C6 | 0.0120 (5) | 0.0111 (5) | 0.0110 (5) | −0.0005 (4) | 0.0013 (4) | 0.0014 (4) |
C7 | 0.0118 (5) | 0.0118 (5) | 0.0156 (5) | −0.0017 (4) | 0.0003 (4) | 0.0021 (4) |
C8 | 0.0145 (5) | 0.0174 (5) | 0.0161 (5) | −0.0047 (4) | −0.0017 (4) | −0.0015 (4) |
C9 | 0.0141 (5) | 0.0137 (5) | 0.0114 (5) | 0.0013 (4) | 0.0004 (4) | 0.0000 (4) |
C10 | 0.0205 (5) | 0.0168 (5) | 0.0104 (5) | 0.0026 (4) | 0.0008 (4) | −0.0001 (4) |
C11 | 0.0214 (6) | 0.0179 (6) | 0.0127 (5) | 0.0029 (5) | 0.0050 (4) | 0.0022 (4) |
C12 | 0.0154 (5) | 0.0157 (5) | 0.0155 (5) | 0.0017 (4) | 0.0041 (4) | 0.0026 (4) |
C13 | 0.0128 (5) | 0.0117 (5) | 0.0127 (5) | 0.0007 (4) | 0.0006 (4) | 0.0019 (4) |
C14 | 0.0120 (5) | 0.0108 (5) | 0.0114 (5) | 0.0016 (4) | 0.0013 (4) | 0.0009 (4) |
C15 | 0.0153 (5) | 0.0147 (5) | 0.0126 (5) | 0.0005 (4) | −0.0019 (4) | −0.0018 (4) |
C16 | 0.0123 (5) | 0.0226 (6) | 0.0145 (5) | −0.0028 (4) | −0.0025 (4) | −0.0011 (4) |
C17 | 0.0149 (5) | 0.0261 (6) | 0.0131 (5) | −0.0027 (5) | −0.0036 (4) | 0.0004 (5) |
C18 | 0.0109 (5) | 0.0213 (6) | 0.0233 (6) | −0.0031 (4) | 0.0005 (4) | 0.0033 (5) |
Cl1 | 0.01365 (12) | 0.02412 (15) | 0.01436 (12) | −0.00049 (10) | −0.00314 (10) | −0.00031 (11) |
O7 | 0.0345 (6) | 0.0301 (6) | 0.0152 (4) | −0.0050 (5) | −0.0071 (4) | −0.0021 (4) |
O8 | 0.0211 (5) | 0.0764 (10) | 0.0235 (6) | −0.0062 (6) | −0.0018 (4) | 0.0216 (6) |
O9 | 0.0349 (6) | 0.0236 (5) | 0.0391 (7) | 0.0044 (5) | −0.0056 (5) | −0.0082 (5) |
O10 | 0.0179 (5) | 0.0391 (6) | 0.0295 (6) | 0.0088 (4) | −0.0084 (4) | −0.0041 (5) |
Mn1—O1 | 1.8714 (9) | C5—C6 | 1.4181 (17) |
Mn1—O2 | 1.8745 (9) | C7—H7 | 0.9500 |
Mn1—N1 | 1.9780 (11) | C8—C16 | 1.5142 (18) |
Mn1—N2 | 1.9803 (11) | C8—H8A | 0.9900 |
Mn1—O6 | 2.2466 (10) | C8—H8B | 0.9900 |
Mn1—O5 | 2.2820 (11) | C9—C14 | 1.4107 (17) |
O1—C6 | 1.3170 (14) | C9—C10 | 1.4156 (17) |
O3—C5 | 1.3678 (14) | C9—C15 | 1.4369 (17) |
O3—C17 | 1.4260 (15) | C10—C11 | 1.3707 (19) |
O2—C14 | 1.3138 (14) | C10—H10 | 0.9500 |
O4—C13 | 1.3634 (15) | C11—C12 | 1.4012 (19) |
O4—C18 | 1.4292 (15) | C11—H11 | 0.9500 |
O5—H5A | 0.811 (15) | C12—C13 | 1.3779 (17) |
O5—H5B | 0.819 (15) | C12—H12 | 0.9500 |
O6—H6A | 0.795 (14) | C13—C14 | 1.4200 (17) |
O6—H6B | 0.804 (14) | C15—H15 | 0.9500 |
N1—C7 | 1.2880 (16) | C16—H16A | 0.9900 |
N1—C8 | 1.4775 (16) | C16—H16B | 0.9900 |
N2—C15 | 1.2891 (16) | C17—H17A | 0.9800 |
N2—C16 | 1.4783 (16) | C17—H17B | 0.9800 |
C1—C2 | 1.4113 (17) | C17—H17C | 0.9800 |
C1—C6 | 1.4116 (16) | C18—H18A | 0.9800 |
C1—C7 | 1.4401 (17) | C18—H18B | 0.9800 |
C2—C3 | 1.3727 (18) | C18—H18C | 0.9800 |
C2—H2 | 0.9500 | Cl1—O8 | 1.4267 (12) |
C3—C4 | 1.4052 (18) | Cl1—O10 | 1.4312 (11) |
C3—H3 | 0.9500 | Cl1—O9 | 1.4416 (13) |
C4—C5 | 1.3758 (17) | Cl1—O7 | 1.4467 (11) |
C4—H4 | 0.9500 | ||
O1—Mn1—O2 | 93.13 (4) | N1—C8—C16 | 107.68 (10) |
O1—Mn1—N1 | 92.42 (4) | N1—C8—H8A | 110.2 |
O2—Mn1—N1 | 174.44 (4) | C16—C8—H8A | 110.2 |
O1—Mn1—N2 | 175.23 (4) | N1—C8—H8B | 110.2 |
O2—Mn1—N2 | 91.60 (4) | C16—C8—H8B | 110.2 |
N1—Mn1—N2 | 82.85 (4) | H8A—C8—H8B | 108.5 |
O1—Mn1—O6 | 93.00 (4) | C14—C9—C10 | 119.82 (11) |
O2—Mn1—O6 | 92.08 (4) | C14—C9—C15 | 121.56 (11) |
N1—Mn1—O6 | 87.60 (4) | C10—C9—C15 | 118.50 (11) |
N2—Mn1—O6 | 87.45 (4) | C11—C10—C9 | 120.33 (12) |
O1—Mn1—O5 | 85.74 (4) | C11—C10—H10 | 119.8 |
O2—Mn1—O5 | 87.37 (4) | C9—C10—H10 | 119.8 |
N1—Mn1—O5 | 93.08 (4) | C10—C11—C12 | 120.52 (12) |
N2—Mn1—O5 | 93.86 (4) | C10—C11—H11 | 119.7 |
O6—Mn1—O5 | 178.59 (4) | C12—C11—H11 | 119.7 |
C6—O1—Mn1 | 128.52 (8) | C13—C12—C11 | 120.08 (12) |
C5—O3—C17 | 116.72 (10) | C13—C12—H12 | 120.0 |
C14—O2—Mn1 | 128.90 (8) | C11—C12—H12 | 120.0 |
C13—O4—C18 | 117.14 (10) | O4—C13—C12 | 126.08 (11) |
Mn1—O5—H5A | 119.9 (15) | O4—C13—C14 | 112.99 (10) |
Mn1—O5—H5B | 114.3 (15) | C12—C13—C14 | 120.92 (11) |
H5A—O5—H5B | 108 (2) | O2—C14—C9 | 125.06 (11) |
Mn1—O6—H6A | 112.0 (13) | O2—C14—C13 | 116.68 (10) |
Mn1—O6—H6B | 111.8 (13) | C9—C14—C13 | 118.26 (11) |
H6A—O6—H6B | 104.9 (18) | N2—C15—C9 | 125.58 (11) |
C7—N1—C8 | 120.93 (10) | N2—C15—H15 | 117.2 |
C7—N1—Mn1 | 125.27 (9) | C9—C15—H15 | 117.2 |
C8—N1—Mn1 | 113.74 (8) | N2—C16—C8 | 108.14 (10) |
C15—N2—C16 | 120.78 (11) | N2—C16—H16A | 110.1 |
C15—N2—Mn1 | 126.18 (9) | C8—C16—H16A | 110.1 |
C16—N2—Mn1 | 112.73 (8) | N2—C16—H16B | 110.1 |
C2—C1—C6 | 119.73 (11) | C8—C16—H16B | 110.1 |
C2—C1—C7 | 117.73 (11) | H16A—C16—H16B | 108.4 |
C6—C1—C7 | 122.45 (11) | O3—C17—H17A | 109.5 |
C3—C2—C1 | 120.63 (11) | O3—C17—H17B | 109.5 |
C3—C2—H2 | 119.7 | H17A—C17—H17B | 109.5 |
C1—C2—H2 | 119.7 | O3—C17—H17C | 109.5 |
C2—C3—C4 | 120.22 (11) | H17A—C17—H17C | 109.5 |
C2—C3—H3 | 119.9 | H17B—C17—H17C | 109.5 |
C4—C3—H3 | 119.9 | O4—C18—H18A | 109.5 |
C5—C4—C3 | 119.96 (12) | O4—C18—H18B | 109.5 |
C5—C4—H4 | 120.0 | H18A—C18—H18B | 109.5 |
C3—C4—H4 | 120.0 | O4—C18—H18C | 109.5 |
O3—C5—C4 | 124.99 (11) | H18A—C18—H18C | 109.5 |
O3—C5—C6 | 113.85 (10) | H18B—C18—H18C | 109.5 |
C4—C5—C6 | 121.15 (11) | O8—Cl1—O10 | 110.06 (8) |
O1—C6—C1 | 124.62 (11) | O8—Cl1—O9 | 110.08 (9) |
O1—C6—C5 | 117.12 (10) | O10—Cl1—O9 | 110.30 (8) |
C1—C6—C5 | 118.26 (11) | O8—Cl1—O7 | 109.56 (8) |
N1—C7—C1 | 125.16 (11) | O10—Cl1—O7 | 109.63 (7) |
N1—C7—H7 | 117.4 | O9—Cl1—O7 | 107.17 (7) |
C1—C7—H7 | 117.4 | ||
N1—C8—C16—N2 | −41.38 (14) | C12—C13—O4—C18 | 5.73 (18) |
C4—C5—O3—C17 | −4.17 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O7 | 0.81 (2) | 1.95 (2) | 2.7505 (16) | 169 (2) |
O5—H5B···O9i | 0.82 (2) | 2.29 (2) | 3.1089 (18) | 175 (2) |
O6—H6A···O1ii | 0.80 (1) | 2.29 (2) | 2.9426 (13) | 140 (2) |
O6—H6B···O2ii | 0.80 (1) | 2.23 (2) | 2.9109 (13) | 143 (2) |
O6—H6A···O3ii | 0.80 (1) | 2.23 (2) | 2.9454 (13) | 151 (2) |
O6—H6B···O4ii | 0.80 (1) | 2.23 (2) | 2.9341 (13) | 147 (2) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y, −z. |
Acknowledgements
This work was supported by grants from the Department of Science and Technology, SERB, New Delhi, India (SERB/F/815/2014–15). SN would like to thank Professor Mohammad Shakir, Chairman of the Department of Chemistry, Aligarh Muslim University, India, who supported this research.
References
Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324–m328. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789–3797. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bull, C., Niederhoffer, E. C., Yoshida, T. & Fee, J. A. (1991). J. Am. Chem. Soc. 113, 4069–4076. CrossRef CAS Web of Science Google Scholar
Dismukes, G. C. (1996). Chem. Rev. 96, 2909–2926. CrossRef PubMed CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groves, J. T. (2005). Cytochrome P450: Structure, Mechanism and Biochemistry, 3rd ed., edited by P. R. Ortiz de Montellano, pp. 1–43. New York: Kluwer Academic/Plenum Publishers. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555. CrossRef CAS Google Scholar
Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803. CSD CrossRef CAS Web of Science Google Scholar
Zhang, C.-G., Tian, G.-H., Ma, Z.-F. & Yan, D.-Y. (2000). Transition Met. Chem. 25, 270–273. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.