metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermination of di­aqua­[N,N′-bis­­(3-meth­oxy-2-oxido­benzyl­­idene)ethyl­enedi­amine-κ4O,N,N′,O′]manganese(III) perchlorate at 100 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002, India, bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany, and cFaculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
*Correspondence e-mail: shabanachem0711@gmail.com, s.kumar@msn.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 October 2016; accepted 28 October 2016; online 4 November 2016)

The crystal structure of the organic–inorganic title salt, [Mn(C18H18N2O4)(H2O)2]ClO4, has been redetermined at 100 K. In contrast to the crystal structure determinations at room temperature [Akitsu et al. (2005[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324-m328.]). Acta Cryst. C61, m324–m328; Bermejo et al. (2007[Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789-3797.]). Eur. J. Inorg. Chem. pp. 3789–3797], positional disorder of the ethyl­ene bridge in the Schiff base ligand and the perchlorate anion is not observed at 100 K. The MnIII ion is six-coordinated with the tetra­dentate Schiff base chelate ligand N,N′-bis­(3-meth­oxy-2-oxybenzyl­idene)ethyl­enedi­amine occupying coordination sites in the equatorial plane and the aqua ligands residing in the two axial positions. The octa­hedral coordination sphere of the MnIII ion exhibits an axial elongation due to the Jahn–Teller effect, which is characteristic of a d4 high-spin electronic configuration.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition metal complexes of Schiff bases show an inter­esting chemistry, including various aspects of organometallic and bioinorganic chemistry (Yamada, 1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]). Schiff base complexes find application in a variety of catalytic transformations as they have the ability to coordinate to metal ions and stabilize unusual oxidation states. Metal complexes containing salen-type Schiff bases are important owing to their resemblance to metallopropyrins with respect to their electronic structure and catalytic activities in the way that they mimic enzymatic oxidations (Groves, 2005[Groves, J. T. (2005). Cytochrome P450: Structure, Mechanism and Biochemistry, 3rd ed., edited by P. R. Ortiz de Montellano, pp. 1-43. New York: Kluwer Academic/Plenum Publishers.]). Inter­est in the coordination chemistry of manganese complexes in high oxidation states is largely centred on the preparation of functional models of manganese-containing biological systems, such as SOD (Bull et al., 1991[Bull, C., Niederhoffer, E. C., Yoshida, T. & Fee, J. A. (1991). J. Am. Chem. Soc. 113, 4069-4076.]) and azide-sensitive catalases (Dismukes, 1996[Dismukes, G. C. (1996). Chem. Rev. 96, 2909-2926.]). In addition, the catalytic properties of manganese complexes in organic processes, e.g. in the enanti­oselective epoxidation of olefins (Zhang et al., 1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.]) make manganese chemistry an attractive area of research.

The cationic complex in the title salt shows a distorted octa­hedral environment around the MnIII ion. The Schiff base ligand behaves as a tetra­dentate chelate ligand with two nitro­gen atoms, N1 and N2, and two oxygen atoms, O1 and O2, occupying the equatorial plane (Fig. 1[link]). O5 and O6 of the coordinating water mol­ecules occupy the two axial positions, whereby the axial Mn—O bonds are elongated owing to the Jahn-Teller effect, which is characteristic of the d4 electronic configuration. Magnetochemical characterization revealed a d4 high-spin configuration (S = 2) of the complex (Akitsu et al., 2005[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324-m328.]).

[Figure 1]
Figure 1
The structures of the mol­ecular components, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radii. The dashed line represents a hydrogen bond.

In the crystal, two cationic complexes form a centrosymmetric hydrogen-bonded dimer, in which an aqua ligand of one complex forms two bifurcated hydrogen bonds to the oxygen atoms of the chelate ligand in the symmetry-related complex (Fig. 2[link]). The second aqua ligand forms hydrogen bonds to the oxygen atoms of two perchlorate anions. Hydrogen-bond details are listed in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O7 0.81 (2) 1.95 (2) 2.7505 (16) 169 (2)
O5—H5B⋯O9i 0.82 (2) 2.29 (2) 3.1089 (18) 175 (2)
O6—H6A⋯O1ii 0.80 (1) 2.29 (2) 2.9426 (13) 140 (2)
O6—H6B⋯O2ii 0.80 (1) 2.23 (2) 2.9109 (13) 143 (2)
O6—H6A⋯O3ii 0.80 (1) 2.23 (2) 2.9454 (13) 151 (2)
O6—H6B⋯O4ii 0.80 (1) 2.23 (2) 2.9341 (13) 147 (2)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z.
[Figure 2]
Figure 2
The hydrogen-bonded centrosymmetric dimer of two cationic complexes in the crystal structure. Carbon-bound H atoms have been omitted for clarity. Hydrogen bonds are represented by dashed lines. [Symmetry codes: (i) −x, −y + 1, −z; (ii) −x, −y, −z; (iii) x, y − 1, z.]

The structure of the title compound has been previously determined at room temperature by others [Akitsu et al., 2005[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324-m328.]; Bermejo et al., 2007[Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789-3797.]; refcodes in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): TAPSOT and TAPSOT01, respectively]. It should be noted that the authors of TAPSOT01 (Bermejo et al., 2007[Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789-3797.]) described the compound as a monohydrate in the experimental section of the corres­ponding article (`compound 2'), although TAPSOT in the CSD and also the crystallographic data listed in the article clearly correspond to the unsolvated complex. The crystal structure of the corresponding monohydrate (CSD refcode: MAXSEJ) was, however, reported by Zhang et al. (2000[Zhang, C.-G., Tian, G.-H., Ma, Z.-F. & Yan, D.-Y. (2000). Transition Met. Chem. 25, 270-273.]), although these authors inconsistently described the compound as a dihydrate. At room temperature, i.e. in TAPSOT and TAPSOT01, the ethyl­ene bridge exhibits positional disorder, which is not observed at 100 K. The perchlorate anion was also found to be disordered at room temperature. The authors of TAPSOT (Akitsu et al., 2005[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324-m328.]) treated the disorder with elongated atom displacement ellipsoids, whereas the authors of TAPSOT01 (Bermejo et al., 2007[Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789-3797.]) preferred to use a split-atom model. At 100 K there is also no evidence for significant disorder of the perchlorate anion. Apart from the non-observed disorder, the redetermination of the crystal structure at 100 K led to a significant improvement of the quality indicators and bond precision as compared with TAPSOT, R1[I>2σ(I)] = 0.0559; bond precision C—C 0.0051 Å, and TAPSOT01, R1[I>2σ(I)] = 0.0444; bond precision C—C = 0.0070 Å.

Synthesis and crystallization

Mn(ClO4)2·6H2O (0.362 g, 1.0 mmol) was mixed with N,N'-bis­(3-meth­oxy-2-oxybenzyl­idene)ethyl­enedi­amine (0.328 g, 1.0 mmol) (Bermejo et al., 2007[Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789-3797.]) and tri­ethyl­amine (2 mmol, 0.28 ml) in 30 ml of a 2:1 (v/v) aceto­nitrile/methanol mixture. The reaction mixture was stirred for 6 h at room temperature. Subsequently, the brown solution was left at room temperature, while the solvents were allowed to evaporate slowly. After 3–4 days, brown crystals suitable for X-ray analysis appeared. The crystals were filtered off and washed with cold methanol. Caution: perchlorates are potentially explosive and should be handled in small qu­anti­ties with care.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C18H18N2O4)(H2O)2]ClO4
Mr 516.76
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 13.978 (2), 13.2080 (19), 22.137 (3)
V3) 4086.8 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.06 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker Kappa Mach3 APEXII
Absorption correction Gaussian (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.957, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 139974, 8570, 6786
Rint 0.068
(sin θ/λ)max−1) 0.794
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.06
No. of reflections 8570
No. of parameters 303
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.57
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaqua[N,N'-bis(3-methoxy-2-oxidobenzylidene)ethylenediamine-κ4O,N,N',O']manganese(III) perchlorate top
Crystal data top
[Mn(C18H18N2O4)(H2O)2]ClO4Dx = 1.680 Mg m3
Mr = 516.76Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9815 reflections
a = 13.978 (2) Åθ = 3.2–33.8°
b = 13.2080 (19) ŵ = 0.84 mm1
c = 22.137 (3) ÅT = 100 K
V = 4086.8 (10) Å3Plate, brown
Z = 80.06 × 0.06 × 0.04 mm
F(000) = 2128
Data collection top
Bruker Kappa Mach3 APEXII
diffractometer
8570 independent reflections
Radiation source: microfocus X-ray tube, Incoatec IµS6786 reflections with I > 2σ(I)
Incoatec Helios mirrors monochromatorRint = 0.068
Detector resolution: 16.67 pixels mm-1θmax = 34.4°, θmin = 3.1°
φ– and ω–scansh = 2222
Absorption correction: gaussian
(SADABS; Bruker, 2013)
k = 2020
Tmin = 0.957, Tmax = 0.978l = 3535
139974 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0383P)2 + 2.5037P]
where P = (Fo2 + 2Fc2)/3
8570 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.57 e Å3
4 restraintsΔρmin = 0.57 e Å3
Special details top

Experimental. Crystal mounted on a MiTeGen loop using Perfluoropolyether PFO-XR75

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Two low-angle reflections were shadowed by the beamstop (002 and 200) and omitted in the final refinement cycles.

The positions of aromatic, imine and methylene H atoms were calculated geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C). The C—H bond lengths were set to 0.95 Å for aromatic and imine H atoms and to 0.99 Å for methylene H atoms. For the methyl groups C—H = 0.98 Å was set. The torsion angles of the methyl groups were initially determined using a circular Fourier search and subsequently refined while maintaining the tetrahedral structure. For the methyl groups, Uiso(H) = 1.5Ueq(C) was applied. The water H atoms were located in a difference Fourier map. The O—H bond lengths were restrained to a target value of 0.84 (2) Å and Uiso(H) = 1.2Ueq(O) was set.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.05507 (2)0.16542 (2)0.02662 (2)0.01032 (4)
O10.01911 (6)0.13705 (7)0.05304 (4)0.01327 (16)
O30.06422 (6)0.07741 (8)0.15036 (4)0.01552 (17)
O20.05860 (6)0.11266 (7)0.05868 (4)0.01282 (16)
O40.23082 (6)0.05403 (7)0.07137 (4)0.01419 (16)
O50.02462 (8)0.31470 (8)0.01391 (5)0.02090 (19)
H5A0.0067 (14)0.3651 (13)0.0316 (8)0.025*
H5B0.0344 (15)0.3299 (15)0.0214 (7)0.025*
O60.13121 (7)0.01671 (7)0.03740 (4)0.01389 (16)
H6A0.1025 (12)0.0212 (13)0.0587 (8)0.017*
H6B0.1363 (13)0.0126 (13)0.0058 (7)0.017*
N10.17881 (7)0.22395 (8)0.00093 (5)0.01278 (18)
N20.10243 (7)0.20154 (8)0.10813 (5)0.01314 (18)
C10.16738 (8)0.17524 (9)0.10433 (5)0.01203 (19)
C20.21723 (9)0.17554 (9)0.15978 (6)0.0142 (2)
H20.28230.19620.16080.017*
C30.17257 (9)0.14629 (10)0.21217 (6)0.0156 (2)
H30.20650.14780.24930.019*
C40.07678 (9)0.11406 (10)0.21103 (6)0.0144 (2)
H40.04580.09470.24740.017*
C50.02787 (8)0.11054 (9)0.15713 (5)0.01208 (19)
C60.07152 (8)0.14179 (9)0.10239 (5)0.01138 (19)
C70.21595 (8)0.21480 (9)0.05204 (6)0.0131 (2)
H70.28050.23580.05700.016*
C80.23024 (9)0.27754 (10)0.04970 (6)0.0160 (2)
H8A0.21040.34950.05100.019*
H8B0.30010.27470.04250.019*
C90.04245 (9)0.16141 (9)0.16346 (5)0.0131 (2)
C100.08533 (10)0.16185 (10)0.22139 (6)0.0159 (2)
H100.05070.18720.25510.019*
C110.17650 (10)0.12588 (10)0.22909 (6)0.0173 (2)
H110.20440.12580.26820.021*
C120.22881 (9)0.08926 (10)0.17972 (6)0.0155 (2)
H120.29250.06610.18530.019*
C130.18793 (8)0.08685 (9)0.12310 (5)0.0124 (2)
C140.09280 (8)0.12115 (9)0.11373 (5)0.01138 (19)
C150.05446 (9)0.19643 (10)0.15778 (6)0.0142 (2)
H150.08590.21760.19370.017*
C160.20569 (9)0.22573 (11)0.10871 (6)0.0165 (2)
H16A0.24370.16290.11320.020*
H16B0.22060.27090.14310.020*
C170.11436 (9)0.05085 (11)0.20418 (6)0.0181 (2)
H17A0.11870.11010.23070.027*
H17B0.17890.02770.19380.027*
H17C0.08000.00350.22510.027*
C180.32985 (9)0.02778 (11)0.07497 (7)0.0185 (2)
H18A0.33830.02740.10410.028*
H18B0.35240.00590.03510.028*
H18C0.36680.08690.08810.028*
Cl10.07410 (2)0.52382 (3)0.12199 (2)0.01738 (6)
O70.05549 (8)0.48739 (9)0.06149 (5)0.0266 (2)
O80.00029 (9)0.48986 (13)0.16163 (6)0.0404 (3)
O90.07464 (9)0.63287 (9)0.11931 (6)0.0325 (3)
O100.16496 (8)0.48708 (10)0.14218 (6)0.0288 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00933 (7)0.01206 (8)0.00956 (8)0.00203 (6)0.00013 (6)0.00028 (6)
O10.0120 (4)0.0182 (4)0.0096 (4)0.0041 (3)0.0015 (3)0.0006 (3)
O30.0123 (4)0.0229 (4)0.0113 (4)0.0044 (3)0.0005 (3)0.0000 (3)
O20.0114 (4)0.0165 (4)0.0105 (4)0.0026 (3)0.0026 (3)0.0017 (3)
O40.0102 (4)0.0183 (4)0.0142 (4)0.0026 (3)0.0007 (3)0.0004 (3)
O50.0237 (5)0.0151 (4)0.0240 (5)0.0021 (4)0.0028 (4)0.0011 (4)
O60.0146 (4)0.0139 (4)0.0132 (4)0.0011 (3)0.0025 (3)0.0005 (3)
N10.0119 (4)0.0127 (4)0.0137 (4)0.0024 (3)0.0007 (3)0.0006 (4)
N20.0117 (4)0.0143 (4)0.0134 (4)0.0007 (3)0.0015 (3)0.0015 (4)
C10.0118 (5)0.0113 (5)0.0129 (5)0.0008 (4)0.0017 (4)0.0017 (4)
C20.0129 (5)0.0144 (5)0.0155 (5)0.0007 (4)0.0035 (4)0.0017 (4)
C30.0156 (5)0.0172 (5)0.0140 (5)0.0000 (4)0.0047 (4)0.0016 (4)
C40.0154 (5)0.0155 (5)0.0123 (5)0.0005 (4)0.0010 (4)0.0013 (4)
C50.0118 (4)0.0131 (5)0.0114 (5)0.0004 (4)0.0001 (4)0.0011 (4)
C60.0120 (5)0.0111 (5)0.0110 (5)0.0005 (4)0.0013 (4)0.0014 (4)
C70.0118 (5)0.0118 (5)0.0156 (5)0.0017 (4)0.0003 (4)0.0021 (4)
C80.0145 (5)0.0174 (5)0.0161 (5)0.0047 (4)0.0017 (4)0.0015 (4)
C90.0141 (5)0.0137 (5)0.0114 (5)0.0013 (4)0.0004 (4)0.0000 (4)
C100.0205 (5)0.0168 (5)0.0104 (5)0.0026 (4)0.0008 (4)0.0001 (4)
C110.0214 (6)0.0179 (6)0.0127 (5)0.0029 (5)0.0050 (4)0.0022 (4)
C120.0154 (5)0.0157 (5)0.0155 (5)0.0017 (4)0.0041 (4)0.0026 (4)
C130.0128 (5)0.0117 (5)0.0127 (5)0.0007 (4)0.0006 (4)0.0019 (4)
C140.0120 (5)0.0108 (5)0.0114 (5)0.0016 (4)0.0013 (4)0.0009 (4)
C150.0153 (5)0.0147 (5)0.0126 (5)0.0005 (4)0.0019 (4)0.0018 (4)
C160.0123 (5)0.0226 (6)0.0145 (5)0.0028 (4)0.0025 (4)0.0011 (4)
C170.0149 (5)0.0261 (6)0.0131 (5)0.0027 (5)0.0036 (4)0.0004 (5)
C180.0109 (5)0.0213 (6)0.0233 (6)0.0031 (4)0.0005 (4)0.0033 (5)
Cl10.01365 (12)0.02412 (15)0.01436 (12)0.00049 (10)0.00314 (10)0.00031 (11)
O70.0345 (6)0.0301 (6)0.0152 (4)0.0050 (5)0.0071 (4)0.0021 (4)
O80.0211 (5)0.0764 (10)0.0235 (6)0.0062 (6)0.0018 (4)0.0216 (6)
O90.0349 (6)0.0236 (5)0.0391 (7)0.0044 (5)0.0056 (5)0.0082 (5)
O100.0179 (5)0.0391 (6)0.0295 (6)0.0088 (4)0.0084 (4)0.0041 (5)
Geometric parameters (Å, º) top
Mn1—O11.8714 (9)C5—C61.4181 (17)
Mn1—O21.8745 (9)C7—H70.9500
Mn1—N11.9780 (11)C8—C161.5142 (18)
Mn1—N21.9803 (11)C8—H8A0.9900
Mn1—O62.2466 (10)C8—H8B0.9900
Mn1—O52.2820 (11)C9—C141.4107 (17)
O1—C61.3170 (14)C9—C101.4156 (17)
O3—C51.3678 (14)C9—C151.4369 (17)
O3—C171.4260 (15)C10—C111.3707 (19)
O2—C141.3138 (14)C10—H100.9500
O4—C131.3634 (15)C11—C121.4012 (19)
O4—C181.4292 (15)C11—H110.9500
O5—H5A0.811 (15)C12—C131.3779 (17)
O5—H5B0.819 (15)C12—H120.9500
O6—H6A0.795 (14)C13—C141.4200 (17)
O6—H6B0.804 (14)C15—H150.9500
N1—C71.2880 (16)C16—H16A0.9900
N1—C81.4775 (16)C16—H16B0.9900
N2—C151.2891 (16)C17—H17A0.9800
N2—C161.4783 (16)C17—H17B0.9800
C1—C21.4113 (17)C17—H17C0.9800
C1—C61.4116 (16)C18—H18A0.9800
C1—C71.4401 (17)C18—H18B0.9800
C2—C31.3727 (18)C18—H18C0.9800
C2—H20.9500Cl1—O81.4267 (12)
C3—C41.4052 (18)Cl1—O101.4312 (11)
C3—H30.9500Cl1—O91.4416 (13)
C4—C51.3758 (17)Cl1—O71.4467 (11)
C4—H40.9500
O1—Mn1—O293.13 (4)N1—C8—C16107.68 (10)
O1—Mn1—N192.42 (4)N1—C8—H8A110.2
O2—Mn1—N1174.44 (4)C16—C8—H8A110.2
O1—Mn1—N2175.23 (4)N1—C8—H8B110.2
O2—Mn1—N291.60 (4)C16—C8—H8B110.2
N1—Mn1—N282.85 (4)H8A—C8—H8B108.5
O1—Mn1—O693.00 (4)C14—C9—C10119.82 (11)
O2—Mn1—O692.08 (4)C14—C9—C15121.56 (11)
N1—Mn1—O687.60 (4)C10—C9—C15118.50 (11)
N2—Mn1—O687.45 (4)C11—C10—C9120.33 (12)
O1—Mn1—O585.74 (4)C11—C10—H10119.8
O2—Mn1—O587.37 (4)C9—C10—H10119.8
N1—Mn1—O593.08 (4)C10—C11—C12120.52 (12)
N2—Mn1—O593.86 (4)C10—C11—H11119.7
O6—Mn1—O5178.59 (4)C12—C11—H11119.7
C6—O1—Mn1128.52 (8)C13—C12—C11120.08 (12)
C5—O3—C17116.72 (10)C13—C12—H12120.0
C14—O2—Mn1128.90 (8)C11—C12—H12120.0
C13—O4—C18117.14 (10)O4—C13—C12126.08 (11)
Mn1—O5—H5A119.9 (15)O4—C13—C14112.99 (10)
Mn1—O5—H5B114.3 (15)C12—C13—C14120.92 (11)
H5A—O5—H5B108 (2)O2—C14—C9125.06 (11)
Mn1—O6—H6A112.0 (13)O2—C14—C13116.68 (10)
Mn1—O6—H6B111.8 (13)C9—C14—C13118.26 (11)
H6A—O6—H6B104.9 (18)N2—C15—C9125.58 (11)
C7—N1—C8120.93 (10)N2—C15—H15117.2
C7—N1—Mn1125.27 (9)C9—C15—H15117.2
C8—N1—Mn1113.74 (8)N2—C16—C8108.14 (10)
C15—N2—C16120.78 (11)N2—C16—H16A110.1
C15—N2—Mn1126.18 (9)C8—C16—H16A110.1
C16—N2—Mn1112.73 (8)N2—C16—H16B110.1
C2—C1—C6119.73 (11)C8—C16—H16B110.1
C2—C1—C7117.73 (11)H16A—C16—H16B108.4
C6—C1—C7122.45 (11)O3—C17—H17A109.5
C3—C2—C1120.63 (11)O3—C17—H17B109.5
C3—C2—H2119.7H17A—C17—H17B109.5
C1—C2—H2119.7O3—C17—H17C109.5
C2—C3—C4120.22 (11)H17A—C17—H17C109.5
C2—C3—H3119.9H17B—C17—H17C109.5
C4—C3—H3119.9O4—C18—H18A109.5
C5—C4—C3119.96 (12)O4—C18—H18B109.5
C5—C4—H4120.0H18A—C18—H18B109.5
C3—C4—H4120.0O4—C18—H18C109.5
O3—C5—C4124.99 (11)H18A—C18—H18C109.5
O3—C5—C6113.85 (10)H18B—C18—H18C109.5
C4—C5—C6121.15 (11)O8—Cl1—O10110.06 (8)
O1—C6—C1124.62 (11)O8—Cl1—O9110.08 (9)
O1—C6—C5117.12 (10)O10—Cl1—O9110.30 (8)
C1—C6—C5118.26 (11)O8—Cl1—O7109.56 (8)
N1—C7—C1125.16 (11)O10—Cl1—O7109.63 (7)
N1—C7—H7117.4O9—Cl1—O7107.17 (7)
C1—C7—H7117.4
N1—C8—C16—N241.38 (14)C12—C13—O4—C185.73 (18)
C4—C5—O3—C174.17 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O70.81 (2)1.95 (2)2.7505 (16)169 (2)
O5—H5B···O9i0.82 (2)2.29 (2)3.1089 (18)175 (2)
O6—H6A···O1ii0.80 (1)2.29 (2)2.9426 (13)140 (2)
O6—H6B···O2ii0.80 (1)2.23 (2)2.9109 (13)143 (2)
O6—H6A···O3ii0.80 (1)2.23 (2)2.9454 (13)151 (2)
O6—H6B···O4ii0.80 (1)2.23 (2)2.9341 (13)147 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.
 

Acknowledgements

This work was supported by grants from the Department of Science and Technology, SERB, New Delhi, India (SERB/F/815/2014–15). SN would like to thank Professor Mohammad Shakir, Chairman of the Department of Chemistry, Aligarh Muslim University, India, who supported this research.

References

First citationAkitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. C61, m324–m328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. (2007). Eur. J. Inorg. Chem. pp. 3789–3797.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBull, C., Niederhoffer, E. C., Yoshida, T. & Fee, J. A. (1991). J. Am. Chem. Soc. 113, 4069–4076.  CrossRef CAS Web of Science Google Scholar
First citationDismukes, G. C. (1996). Chem. Rev. 96, 2909–2926.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroves, J. T. (2005). Cytochrome P450: Structure, Mechanism and Biochemistry, 3rd ed., edited by P. R. Ortiz de Montellano, pp. 1–43. New York: Kluwer Academic/Plenum Publishers.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.  CrossRef CAS Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, C.-G., Tian, G.-H., Ma, Z.-F. & Yan, D.-Y. (2000). Transition Met. Chem. 25, 270–273.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds