metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermination of catena-poly[[chloridolead(II)]-μ2-chlorido-di-μ2-thio­urea-κ4S:S] at 100 K

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S., Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco, and bCentre National de l'Energie, des Sciences et des Techniques Nucléaires, CNESTEN, BP 1382 R.P. Rabat, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 October 2016; accepted 31 October 2016; online 8 November 2016)

Although the structure rerefinement (CCD data at 100 K) of the polymeric lead(II) thio­urea complex, [PbCl2·2tu]n where (tu = SCN2H4), basically confirmed the previous study based on integrated Weissenberg data recorded at room temperature [Nardelli & Fava (1959[Nardelli, M. & Fava, G. (1959). Acta Cryst. 12, 727-732.]). Acta Cryst. 12, 727–732]; all atomic positions could be determined with significantly higher precision and accuracy. In addition, all H atoms could be located from difference maps, revealing details of the hydrogen-bonding scheme.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A survey in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that the inter­action of thio­urea (tu) with lead(II) can result in a variety of different compounds and types of coordination. A sixfold coordination of lead by thio­urea is found in triclinic Pb(ClO4)2·6tu (Goldberg & Herbstein, 1972[Goldberg, I. & Herbstein, F. H. (1972). Acta Cryst. B28, 410-415.]), sevenfold coordination in PbCl2·2tu (Nardelli & Fava, 1959[Nardelli, M. & Fava, G. (1959). Acta Cryst. 12, 727-732.]) – which is redetermined in the present work – and eightfold coordination in PbH(COO)2·4tu·H2O (Goldberg & Herbstein, 1973[Goldberg, I. & Herbstein, F. H. (1973). Acta Cryst. B29, 246-250.]) or Pb(CHOO)2·2tu (Nardelli et al., 1960[Nardelli, M., Fava, G. & Branchi, G. (1960). Acta Cryst. 13, 898-904.]).

The crystal structure of the title compound comprises an infinite polymeric chain propagating along the b-axis direction (Fig. 1[link]) in which the PbII ions are linked by six bridging atoms, namely four S atoms from two pairs of symmetry-related thio­urea ligands and by two symmetry-related Cl anions. The distorted sevenfold coordination is completed by another terminal Cl anion. The resulting [PbS4Cl3] polyhedron can be derived from a distorted trigonal prism formed by four S and two Cl atoms that is capped on one of the lateral faces by another Cl atom. In comparison with the previous determination of the title compound (Nardelli & Fava, 1959[Nardelli, M. & Fava, G. (1959). Acta Cryst. 12, 727-732.]) that was based on integrated Weissenberg data (room-temperature measurement), the current redetermination reveals not only a higher precision but also a significantly higher accuracy, in particular for the C=S, C—C and C—N bond lengths (Table 1[link]). In contrast to the previous study, the H atoms could be determined in the current study. All of them are involved in hydrogen-bonding inter­actions. Intra-chain N—H⋯Cl hydrogen bonds as well as inter­chain N—H⋯Cl and N—H⋯S hydrogen bonds (Table 2[link]) are observed in the crystal, leading to a three-dimensional network structure (Fig. 2[link]).

Table 1
Comparison of bond lengths (Å) in the current and the previous (Nardelli & Fava, 1959[Nardelli, M. & Fava, G. (1959). Acta Cryst. 12, 727-732.]) refinement of poly[μ2-chlorido-chlorido­bis­(μ2-thio­urea-κ2S:S)lead(II)]

For the previous refinement: a = 21.20 (4), b = 4.06 (1), c = 12.02 (2) Å; R = 0.114.

Bond Current refinement Previous refinement
Pb—Cl1 2.7451 (8) 2.75 (4)
Pb—Cl2 3.1708 (7) 3.17 (3)
Pb—Cl1i 3.1635 (7) 3.28 (3)
Pb—S1 3.0057 (7) 3.02 (3)
Pb—S1ii 3.0494 (7) 3.04 (3)
Pb—S2i 2.9923 (7) 3.10 (3)
Pb—S2 2.9494 (7) 2.92 (3)
S1—C1 1.732 (3) 1.68 (9)
S2—C2 1.739 (3) 1.78 (17)
C1—N1 1.322 (4) 1.40 (12)
C1—N2 1.328 (4) 1.35 (14)
C2—N3 1.320 (4) 1.32 (20)
C2—N4 1.323 (4) 1.34 (17)
Symmetry codes: (i) x, y + 1, z; (ii) x, y − 1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1A⋯Cl1i 0.86 2.53 3.299 (3) 150
N4—H1B⋯Cl2ii 0.86 2.50 3.336 (3) 163
N3—H2A⋯Cl1i 0.86 2.78 3.494 (4) 142
N3—H2A⋯S1iii 0.86 2.85 3.421 (3) 126
N3—H2B⋯Cl1iv 0.86 2.44 3.285 (3) 168
N1—H3A⋯Cl2v 0.86 2.72 3.480 (4) 149
N1—H3A⋯S2v 0.86 2.75 3.414 (3) 135
N1—H3B⋯Cl2vi 0.86 2.37 3.232 (4) 175
N2—H4A⋯Cl2v 0.86 2.49 3.304 (3) 159
N2—H4B⋯Cl1vii 0.86 2.44 3.275 (3) 164
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y-1, z; (v) [-x, -y, z+{\script{1\over 2}}]; (vi) x, y+1, z; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The polymeric chain in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry codes: (a) x, y + 1, z; (b) x, y − 1, z.]
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b axis. The coordination sphere around the PbII atom is given in the polyhedral representation; N—H⋯Cl and N–H⋯S hydrogen bonds are shown as dashed lines (see Table 2[link] for details).

Synthesis and crystallization

To obtain the title compound, (di­amino­methyl­idene)sulfonium chloride–thio­urea (3/2) (Zouihri, 2012[Zouihri, H. (2012). Acta Cryst. E68, o257.]) (1 mmol) in ethanol (10 ml) was added dropwise to an aqueous solution (5 ml) of lead chlorate (2 mmol). The resulting solution was allowed to stand at room temperature. After two weeks, colourless crystals with good quality were obtained from the filtrate and dried in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The same atom labelling as in the previous study (Nardelli & Fava, 1959[Nardelli, M. & Fava, G. (1959). Acta Cryst. 12, 727-732.]) was used for better comparison (Table 1[link]). All hydrogen atoms could be localized in difference Fourier syntheses. The structure was refined as an inversion twin (Table 3[link]), using 5385 Friedel pairs. Reflections (200) and (201) were omitted from the refinement due to obstruction from the beam stop.

Table 3
Experimental details

Crystal data
Chemical formula [PbCl2(CH4N2S)2]
Mr 430.33
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 21.1951 (6), 4.0280 (1), 11.9433 (3)
V3) 1019.65 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 17.43
Crystal size (mm) 0.46 × 0.17 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.040, 0.087
No. of measured, independent and observed [I > 2σ(I)] reflections 23237, 6206, 5867
Rint 0.032
(sin θ/λ)max−1) 0.904
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.041, 1.04
No. of reflections 6206
No. of parameters 101
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.18, −2.38
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.315 (4)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[chloridolead(II)]-µ2-chlorido-di-µ2-thiourea-κ2S:S] top
Crystal data top
[PbCl2(CH4N2S)2]Dx = 2.803 Mg m3
Mr = 430.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 318 reflections
a = 21.1951 (6) Åθ = 1.5–28.3°
b = 4.0280 (1) ŵ = 17.43 mm1
c = 11.9433 (3) ÅT = 100 K
V = 1019.65 (5) Å3Prism, colourless
Z = 40.46 × 0.17 × 0.14 mm
F(000) = 784
Data collection top
Bruker APEXII CCD detector
diffractometer
6206 independent reflections
Radiation source: fine-focus sealed tube5867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 40.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3836
Tmin = 0.040, Tmax = 0.087k = 75
23237 measured reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0121P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.001
S = 1.04Δρmax = 1.18 e Å3
6206 reflectionsΔρmin = 2.38 e Å3
101 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.315 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.10368 (2)0.29058 (2)0.09284 (2)0.00922 (2)
Cl10.23177 (4)0.24529 (17)0.06240 (7)0.01151 (10)
Cl20.01146 (3)0.21081 (15)0.10426 (7)0.01147 (13)
S20.09634 (4)0.20155 (16)0.08955 (7)0.00909 (11)
S10.15296 (4)0.78245 (15)0.26068 (7)0.00912 (11)
C10.10345 (13)0.6395 (9)0.3655 (3)0.0122 (4)
C20.15858 (15)0.1690 (6)0.1838 (2)0.0102 (4)
N30.21531 (14)0.2855 (6)0.1607 (3)0.0145 (4)
H2A0.24530.26560.20880.017*
H2B0.22230.38120.09750.017*
N10.04268 (13)0.5872 (8)0.3479 (3)0.0187 (5)
H3A0.01950.50660.40040.022*
H3B0.02630.63380.28390.022*
N20.12793 (14)0.5659 (8)0.4648 (2)0.0185 (5)
H4A0.10430.48540.51660.022*
H4B0.16740.59880.47720.022*
N40.14795 (14)0.0218 (8)0.2809 (2)0.0196 (5)
H1A0.17800.00230.32890.024*
H1B0.11100.05430.29610.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.00719 (4)0.01007 (3)0.01040 (4)0.00009 (2)0.00000 (5)0.00047 (9)
Cl10.0079 (3)0.0156 (2)0.0110 (2)0.00059 (18)0.0001 (2)0.00040 (17)
Cl20.0080 (2)0.0163 (2)0.0101 (4)0.00025 (15)0.0003 (2)0.0017 (2)
S20.0074 (3)0.0108 (2)0.0090 (3)0.00018 (17)0.0008 (2)0.00054 (19)
S10.0080 (3)0.0107 (2)0.0086 (3)0.00211 (18)0.0000 (2)0.0005 (2)
C10.0103 (12)0.0157 (10)0.0107 (11)0.0031 (8)0.0007 (8)0.0012 (9)
C20.0097 (11)0.0118 (9)0.0091 (10)0.0014 (7)0.0004 (9)0.0004 (7)
N30.0087 (11)0.0224 (11)0.0125 (11)0.0045 (8)0.0014 (9)0.0029 (8)
N10.0075 (10)0.0341 (14)0.0146 (11)0.0044 (9)0.0003 (9)0.0046 (11)
N20.0114 (12)0.0343 (15)0.0099 (10)0.0059 (10)0.0019 (9)0.0063 (9)
N40.0127 (12)0.0342 (14)0.0119 (11)0.0076 (10)0.0033 (9)0.0081 (10)
Geometric parameters (Å, º) top
Pb—Cl12.7451 (8)C1—N21.328 (4)
Pb—S22.9494 (7)C2—N31.320 (4)
Pb—S2i2.9923 (7)C2—N41.323 (4)
Pb—S13.0057 (7)N3—H2A0.8600
Pb—S1ii3.0494 (7)N3—H2B0.8600
Pb—Cl23.1708 (7)N1—H3A0.8600
S2—C21.739 (3)N1—H3B0.8600
S2—Pbii2.9924 (7)N2—H4A0.8600
S1—C11.732 (3)N2—H4B0.8600
S1—Pbi3.0493 (7)N4—H1A0.8600
C1—N11.322 (4)N4—H1B0.8600
Cl1—Pb—S284.82 (2)Pb—S1—Pbi83.40 (2)
Cl1—Pb—S2i90.03 (2)N1—C1—N2119.1 (3)
S2—Pb—S2i85.36 (2)N1—C1—S1121.9 (3)
Cl1—Pb—S177.79 (2)N2—C1—S1118.9 (2)
S2—Pb—S1162.54 (2)N3—C2—N4119.9 (3)
S2i—Pb—S193.035 (19)N3—C2—S2122.0 (2)
Cl1—Pb—S1ii72.76 (2)N4—C2—S2118.2 (2)
S2—Pb—S1ii93.01 (2)C2—N3—H2A120.0
S2i—Pb—S1ii162.79 (2)C2—N3—H2B120.0
S1—Pb—S1ii83.40 (2)H2A—N3—H2B120.0
Cl1—Pb—Cl2136.433 (18)C1—N1—H3A120.0
S2—Pb—Cl264.09 (2)C1—N1—H3B120.0
S2i—Pb—Cl2115.26 (2)H3A—N1—H3B120.0
S1—Pb—Cl2131.19 (2)C1—N2—H4A120.0
S1ii—Pb—Cl278.92 (2)C1—N2—H4B120.0
C2—S2—Pb112.77 (10)H4A—N2—H4B120.0
C2—S2—Pbii118.89 (10)C2—N4—H1A120.0
Pb—S2—Pbii85.36 (2)C2—N4—H1B120.0
C1—S1—Pb92.99 (11)H1A—N4—H1B120.0
C1—S1—Pbi119.38 (11)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1A···Cl1iii0.862.533.299 (3)150
N4—H1B···Cl2iv0.862.503.336 (3)163
N3—H2A···Cl1iii0.862.783.494 (4)142
N3—H2A···S1v0.862.853.421 (3)126
N3—H2B···Cl1ii0.862.443.285 (3)168
N1—H3A···Cl2vi0.862.723.480 (4)149
N1—H3A···S2vi0.862.753.414 (3)135
N1—H3B···Cl2i0.862.373.232 (4)175
N2—H4A···Cl2vi0.862.493.304 (3)159
N2—H4B···Cl1vii0.862.443.275 (3)164
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z1/2; (iv) x, y, z1/2; (v) x+1/2, y3/2, z1/2; (vi) x, y, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
Comparison of bond lengths (Å) in the current and the previous (Nardelli & Fava, 1959) refinement of poly[µ2-chlorido-chloridobis(µ2-thiourea-κ2S:S)lead(II)] top
For the previous refinement: a = 21.20 (4), b = 4.06 (1), c = 12.02 (2) Å; R = 0.114.
BondCurrent refinementPrevious refinement
Pb—Cl12.7451 (8)2.75 (4)
Pb—Cl23.1708 (7)3.17 (3)
Pb—Cl1i3.1635 (7)3.28 (3)
Pb—S13.0057 (7)3.02 (3)
Pb—S1ii3.0494 (7)3.04 (3)
Pb—S2i2.9923 (7)3.10 (3)
Pb—S22.9494 (7)2.92 (3)
S1—C11.732 (3)1.68 (9)
S2—C21.739 (3)1.78 (17)
C1—N11.322 (4)1.40 (12)
C1—N21.328 (4)1.35 (14)
C2—N31.320 (4)1.32 (20)
C2—N41.323 (4)1.34 (17)
Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z.
 

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoldberg, I. & Herbstein, F. H. (1972). Acta Cryst. B28, 410–415.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGoldberg, I. & Herbstein, F. H. (1973). Acta Cryst. B29, 246–250.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. & Fava, G. (1959). Acta Cryst. 12, 727–732.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationNardelli, M., Fava, G. & Branchi, G. (1960). Acta Cryst. 13, 898–904.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZouihri, H. (2012). Acta Cryst. E68, o257.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds