metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2-Hy­dr­oxy­benzoato-κO)triphen­yl(tri­phenyl­phosphine oxide-κO)tin(IV)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bLaboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens, France
*Correspondence e-mail: dlibasse@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 September 2016; accepted 16 November 2016; online 22 November 2016)

The title compound, [Sn{C6H4(OH)COO}(C6H5)3{OP(C6H5)3}], is comprised of discrete mol­ecules with the SnIV atom in a trigonal–bipyramidal coordination environment. The carboxyl­ate O atom of the salicylate anion and the O atom of the tri­phenyl­phosphine oxide moiety are in the axial positions and the three ipso C atoms occupy the equatorial positions. An intra­molecular O—H⋯O hydrogen bond is present in the anion between the hy­droxy group and the carbonyl atom O of the carboxyl­ate group.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The applications of organotin compounds in various fields (Omae, 1989[Omae, I. (1989). Organotin Chemistry (Journal of Organometallic Chemistry Library), p. 21. Amsterdam: Elsevier.]) might explain the effort to synthesize and structurally determine new representatives of this family of compounds. In this context, the crystal structure of the derivative C6H4(OH)CO2SnPh3 has been determined by Vollano et al. (1984[Vollano, J. F., Day, R. O., Rau, D. N., Chandrasekhar, V. & Holmes, R. R. (1984). Inorg. Chem. 23, 3153-3160.]), followed by a redetermination by Rauf et al. (2008[Rauf, M. K., Saeed, M. A., Din, I.-U., Bolte, M., Badshah, A. & Mirza, B. (2008). J. Organomet. Chem. 693, 3043-3048.]). The structure consists of discrete mol­ecules, with a tetra­hedral coordination of the SnIV atom by the carboxyl­ate –CO2 moiety and three phenyl groups. Related structures, viz. [Sn(C6H5COC6H4COO)(C6H5)3{(C6H5)3OP}] and [Sn(OOCC6HF4)(C6H5)3{(C6H5)3OP}] were reported by Diop et al. (2006[Diop, C. A. K., Touré, A., Diop, L. & Welter, R. (2006). Acta Cryst. E62, m3338-m3340.]) and Ma et al. (2006[Ma, C., Sun, J. & Zhang, R. (2006). J. Organomet. Chem. 691, 5873-5886.]), respectively. In these structures, the OPPh3 moiety coordinates in a monodentate manner through the O atom to an SnPh3 residue. The scarcity of data on OPPh3 moieties coordinating to an SnPh3 residue that is additionally linked to a carboxyl­ate group has prompted us to study the inter­actions between C6H4(OH)CO2SnPh3 and OPPh3, which has yielded the mononuclear title compound.

The mol­ecular structure consists of a salicylate anion and a OPPh3 mol­ecule, each coordinating to the SnIV atom of the SnPh3 group in a monodentate mode. The SnIV atom has a distorted trigonal–bipyramidal coordination environment, with the three phenyl groups in the equatorial positions (Fig. 1[link]). The Sn—O1 bond involving the anion [2.124 (2) Å] and the Sn—O4 bond involving the OPPh3 group [2.451 (2) Å] are markedly different. The O1—Sn—O4 angle [171.65 (9)°] deviates from linearity. The sum of the C(ipso)—Sn—C(ipso) angles amounts to 357.36°. Comparable C(ipso)—Sn—C(ipso) angular sums of 359.07 and 357.63° were observed for the related structures reported by Diop et al. (2006[Diop, C. A. K., Touré, A., Diop, L. & Welter, R. (2006). Acta Cryst. E62, m3338-m3340.]) and Ma et al. (2006[Ma, C., Sun, J. & Zhang, R. (2006). J. Organomet. Chem. 691, 5873-5886.]), respectively. The corresponding O—Sn—O angles in these structures are 175.46 (11) and 178.03 (11)°. The P—O4 bond length [1.489 (2) Å] in (I) is very similar to that in the structure reported by Ma et al. (1.486 Å), but different to the one reported by Diop et al. [1.511 (3) Å]. In the free OPPh3 ligand, the P—O bond length is 1.460 (1) Å (Bandoli et al., 1970[Bandoli, G., Bortolozzo, G., Clemente, D. A., Croatto, U. & Panattoni, C. (1970). J. Chem. Soc. A, pp. 2778-2780.]). An intra­molecular hydrogen bond is present between the hy­droxy group and the C=O group of the carboxyl­ate moiety (Table 1[link]). In addition, a weak intra­molecular C—H⋯O inter­action between one of the phenyl H atoms and the carbonyl O atom is observed. The packing of mol­ecules in the crystal has no special features and is depicted in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.82 1.82 2.546 (4) 147
C8—H8⋯O5 0.93 2.43 3.071 (4) 126
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. C-bound H atoms have been omitted for clarity. The intra­molecular O—H⋯O hydrogen bond is shown with a dashed line.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. The intramolecular O—H⋯O hydrogen bond is shown as a dashed line, and C-bound H atoms have been omitted for clarity.

A search of the Cambridge Structural Database (Version 5.37 plus two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing salicylate moieties revealed 2105 hits while the Sn(Ph3)(OPPh3) fragment is present in 12 structures.

Synthesis and crystallization

C6H4(OH)CO2SnPh3, (I), was obtained from the condensation of salicylic acid (0.5 g, 4 mmol) with tri­phenyl­tin(IV) hydroxide (1.328 g, 4 mmol) in ethanol (50 ml). The title compound was obtained by reacting an ethano­lic solution of (I) (0.487 g, 1 mmol) with OPPh3 (0.278 g, 1 mmol). The mixture was stirred for several hours. Slow solvent evaporation yielded colourless single crystals suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Sn(C6H5)3(C7H5O3)(C18H15OP)]
Mr 765.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 9.3620 (3), 17.7187 (7), 22.1796 (9)
V3) 3679.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.10 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.69, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 11302, 11302, 8849
Rint 0.067
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.063, 1.05
No. of reflections 11302
No. of parameters 443
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.24
Absolute structure Flack x determined using 3310 quotients [(I+) − (I-)]/[(I+) + (I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.026 (5)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(2-Hydroxybenzoato-κO)triphenyl(triphenylphosphine oxide-κO)tin(IV) top
Crystal data top
[Sn(C6H5)3(C7H5O3)(C18H15OP)]Dx = 1.382 Mg m3
Mr = 765.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 162157 reflections
a = 9.3620 (3) Åθ = 2.3–30.6°
b = 17.7187 (7) ŵ = 0.78 mm1
c = 22.1796 (9) ÅT = 293 K
V = 3679.2 (2) Å3Platelet, colorless
Z = 40.10 × 0.05 × 0.02 mm
F(000) = 1560
Data collection top
Bruker D8 Venture
diffractometer
11302 independent reflections
Radiation source: fine-focus sealed-tube8849 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.067
combinatoin of /w– and /f–scansθmax = 30.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1313
Tmin = 0.69, Tmax = 0.75k = 025
11302 measured reflectionsl = 031
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.2485P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
11302 reflectionsΔρmax = 0.59 e Å3
443 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack x determined using 3310 quotients [(I+) - (I-)]/[(I+) + (I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.026 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.92470 (2)0.23909 (2)0.79019 (2)0.03537 (6)
P11.10239 (8)0.33513 (4)0.65040 (3)0.03534 (18)
O10.8198 (3)0.17642 (14)0.85879 (10)0.0509 (6)
O20.9484 (5)0.1873 (2)1.03685 (13)0.0999 (11)
H20.98100.20901.00720.150*
O41.0151 (2)0.30745 (12)0.70199 (9)0.0432 (5)
O50.9652 (3)0.22689 (17)0.92674 (11)0.0664 (7)
C10.7881 (4)0.1037 (2)0.7273 (2)0.0715 (12)
H10.83690.07720.75710.086*
C20.6626 (5)0.1038 (2)0.9478 (2)0.0709 (12)
H2A0.63000.10200.90820.085*
C31.3704 (4)0.1963 (2)0.84320 (18)0.0570 (10)
H31.43090.21080.87440.068*
C41.3334 (5)0.1325 (2)0.7513 (2)0.0666 (11)
H41.36820.10260.72020.080*
C51.2605 (4)0.2594 (3)0.5616 (2)0.0773 (12)
H51.33130.29550.56730.093*
C60.8541 (5)0.5160 (2)0.61409 (18)0.0655 (11)
H60.79150.54650.63570.079*
C71.3407 (5)0.3410 (3)0.7212 (2)0.0781 (14)
H71.29890.30020.74080.094*
C81.2282 (3)0.21838 (18)0.84431 (15)0.0470 (8)
H81.19340.24650.87650.056*
C91.4699 (5)0.3668 (3)0.7407 (2)0.0880 (16)
H91.51490.34290.77280.106*
C101.5328 (4)0.4259 (2)0.7145 (2)0.0807 (13)
H101.61930.44430.72900.097*
C110.7223 (4)0.2195 (3)0.68116 (17)0.0694 (12)
H110.72640.27190.67930.083*
C121.3371 (5)0.4329 (3)0.6466 (2)0.0926 (18)
H121.29270.45670.61430.111*
C130.9754 (5)0.4869 (2)0.52329 (17)0.0633 (11)
H130.99440.49750.48300.076*
C141.0123 (3)0.40946 (17)0.61023 (13)0.0379 (7)
C151.0377 (4)0.2061 (2)0.58802 (17)0.0569 (9)
H150.95560.20590.61160.068*
C161.0562 (5)0.1502 (2)0.54498 (19)0.0739 (12)
H160.98700.11320.53960.089*
C171.2782 (7)0.2043 (3)0.5187 (2)0.1018 (18)
H171.36010.20390.49500.122*
C191.1918 (4)0.15498 (19)0.75101 (15)0.0478 (8)
H191.13260.14060.71930.057*
C200.9343 (4)0.41208 (17)0.81022 (14)0.0462 (7)
H201.01590.40980.78640.055*
C210.8898 (5)0.4812 (2)0.83324 (17)0.0612 (11)
H210.94220.52460.82510.073*
C220.7383 (4)0.3524 (2)0.85800 (15)0.0486 (8)
H220.68650.30910.86710.058*
C230.6935 (4)0.4217 (2)0.88043 (17)0.0638 (11)
H230.61180.42470.90410.077*
C240.8303 (6)0.1478 (2)1.02070 (18)0.0712 (12)
C250.6367 (7)0.1028 (6)0.6416 (3)0.136 (4)
H250.58500.07610.61280.163*
C260.7584 (8)0.1079 (3)1.0650 (2)0.104 (2)
H260.79060.10921.10470.124*
C270.6406 (5)0.1796 (5)0.6392 (2)0.110 (2)
H270.58930.20530.60970.132*
C280.7072 (7)0.0648 (4)0.6854 (3)0.116 (2)
H280.70130.01250.68730.139*
C291.4689 (6)0.4584 (3)0.6666 (3)0.113 (2)
H291.51350.49820.64680.136*
C300.8634 (4)0.1858 (2)0.91366 (16)0.0493 (9)
C310.7700 (5)0.4853 (2)0.86754 (19)0.0686 (12)
H310.73970.53170.88240.082*
C320.6431 (9)0.0675 (3)1.0507 (3)0.119 (3)
H320.59690.04031.08080.143*
C350.7822 (4)0.14517 (19)0.96130 (15)0.0533 (9)
C360.5897 (7)0.0646 (3)0.9921 (3)0.109 (2)
H360.50770.03730.98310.131*
C370.9180 (4)0.45468 (19)0.64161 (15)0.0544 (8)
H370.89720.44380.68170.065*
C381.0404 (4)0.4262 (2)0.55051 (14)0.0494 (9)
H381.10360.39630.52870.059*
C390.8835 (5)0.5316 (2)0.55470 (19)0.0655 (11)
H390.84070.57280.53600.079*
C401.1376 (3)0.26135 (19)0.59650 (13)0.0419 (7)
C411.2718 (3)0.37294 (19)0.67417 (14)0.0432 (8)
C421.1766 (6)0.1501 (3)0.5107 (2)0.0888 (16)
H421.18960.11300.48160.107*
C430.7969 (3)0.1814 (2)0.72536 (14)0.0445 (8)
C441.4224 (4)0.1539 (2)0.79708 (19)0.0653 (10)
H441.51790.13950.79670.078*
C451.1377 (3)0.19839 (15)0.79707 (14)0.0380 (7)
C460.8592 (3)0.34689 (17)0.82223 (13)0.0370 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03818 (10)0.03418 (9)0.03376 (9)0.00002 (9)0.00066 (9)0.00042 (8)
P10.0374 (4)0.0353 (4)0.0333 (4)0.0011 (3)0.0024 (3)0.0046 (3)
O10.0659 (16)0.0497 (14)0.0371 (13)0.0038 (12)0.0077 (12)0.0078 (11)
O20.145 (3)0.107 (3)0.0478 (17)0.009 (3)0.009 (2)0.0028 (17)
O40.0484 (12)0.0442 (12)0.0371 (12)0.0013 (9)0.0060 (10)0.0081 (10)
O50.0704 (17)0.0788 (19)0.0501 (14)0.0145 (16)0.0038 (12)0.0017 (14)
C10.062 (2)0.061 (2)0.091 (3)0.011 (2)0.013 (2)0.029 (2)
C20.086 (3)0.062 (3)0.065 (3)0.002 (2)0.023 (2)0.009 (2)
C30.045 (2)0.063 (2)0.063 (2)0.0003 (17)0.0127 (18)0.006 (2)
C40.066 (3)0.064 (3)0.070 (3)0.020 (2)0.009 (2)0.011 (2)
C50.068 (2)0.067 (3)0.097 (3)0.003 (2)0.034 (2)0.018 (3)
C60.073 (3)0.050 (2)0.073 (3)0.019 (2)0.000 (2)0.004 (2)
C70.060 (2)0.080 (3)0.094 (4)0.023 (2)0.026 (2)0.043 (3)
C80.0473 (19)0.0444 (19)0.0494 (18)0.0006 (15)0.0019 (15)0.0003 (15)
C90.064 (3)0.099 (4)0.101 (4)0.021 (3)0.035 (3)0.033 (3)
C100.054 (2)0.073 (3)0.116 (4)0.015 (2)0.030 (3)0.001 (3)
C110.045 (2)0.109 (4)0.055 (2)0.010 (2)0.0049 (17)0.001 (2)
C120.080 (3)0.079 (3)0.119 (4)0.036 (3)0.046 (3)0.047 (3)
C130.080 (3)0.062 (2)0.047 (2)0.003 (2)0.0060 (19)0.0218 (19)
C140.0409 (17)0.0352 (16)0.0376 (17)0.0023 (13)0.0018 (13)0.0033 (13)
C150.057 (2)0.056 (2)0.058 (2)0.0040 (18)0.0066 (17)0.0107 (18)
C160.088 (3)0.056 (2)0.077 (3)0.005 (2)0.003 (3)0.018 (2)
C170.112 (4)0.091 (4)0.103 (4)0.009 (3)0.057 (3)0.026 (3)
C190.051 (2)0.0448 (19)0.0473 (19)0.0029 (16)0.0005 (16)0.0046 (15)
C200.054 (2)0.0420 (17)0.0421 (16)0.0007 (18)0.0024 (16)0.0023 (12)
C210.080 (3)0.0413 (19)0.063 (2)0.0031 (19)0.012 (2)0.0004 (17)
C220.046 (2)0.054 (2)0.0459 (19)0.0026 (16)0.0040 (16)0.0044 (16)
C230.060 (2)0.077 (3)0.055 (2)0.021 (2)0.0067 (19)0.016 (2)
C240.109 (4)0.060 (3)0.045 (2)0.021 (3)0.015 (2)0.002 (2)
C250.076 (4)0.227 (10)0.105 (5)0.058 (5)0.010 (4)0.095 (6)
C260.196 (7)0.072 (3)0.043 (2)0.021 (4)0.037 (3)0.014 (2)
C270.061 (3)0.209 (8)0.060 (3)0.021 (4)0.010 (2)0.019 (4)
C280.093 (4)0.111 (5)0.143 (6)0.037 (4)0.025 (4)0.084 (4)
C290.085 (4)0.084 (4)0.170 (6)0.048 (3)0.047 (4)0.051 (4)
C300.062 (2)0.044 (2)0.0421 (19)0.0105 (17)0.0093 (17)0.0049 (15)
C310.087 (3)0.051 (2)0.068 (3)0.022 (2)0.013 (2)0.019 (2)
C320.192 (7)0.081 (4)0.085 (4)0.008 (4)0.079 (5)0.015 (3)
C350.075 (3)0.0419 (19)0.0428 (19)0.0124 (19)0.0186 (18)0.0094 (15)
C360.133 (5)0.089 (4)0.105 (4)0.027 (4)0.053 (4)0.009 (3)
C370.066 (2)0.054 (2)0.0434 (17)0.012 (2)0.0039 (19)0.0048 (15)
C380.056 (2)0.053 (2)0.0393 (17)0.0060 (16)0.0022 (15)0.0072 (15)
C390.081 (3)0.041 (2)0.074 (3)0.0030 (19)0.020 (2)0.0190 (19)
C400.0465 (16)0.0382 (16)0.0410 (15)0.0045 (15)0.0043 (13)0.0035 (15)
C410.0411 (18)0.0420 (18)0.0466 (18)0.0036 (15)0.0024 (15)0.0013 (15)
C420.125 (5)0.062 (3)0.079 (3)0.019 (3)0.013 (3)0.025 (2)
C430.0335 (16)0.060 (2)0.0397 (18)0.0100 (16)0.0085 (13)0.0109 (15)
C440.0451 (19)0.068 (2)0.083 (3)0.011 (2)0.005 (2)0.008 (2)
C450.0412 (16)0.0288 (14)0.0440 (17)0.0015 (12)0.0001 (15)0.0049 (14)
C460.0428 (17)0.0383 (17)0.0298 (15)0.0074 (14)0.0031 (13)0.0006 (12)
Geometric parameters (Å, º) top
Sn1—C452.126 (3)C12—H120.9300
Sn1—O12.124 (2)C13—C391.362 (6)
Sn1—C462.128 (3)C13—C381.376 (5)
Sn1—C432.132 (3)C13—H130.9300
Sn1—O42.451 (2)C14—C371.380 (5)
P1—O41.489 (2)C14—C381.383 (4)
P1—C141.800 (3)C15—C401.368 (5)
P1—C411.800 (3)C15—C161.386 (5)
P1—C401.802 (3)C15—H150.9300
O1—C301.294 (4)C16—C421.360 (6)
O2—C241.357 (6)C16—H160.9300
O2—H20.8200C17—C421.363 (7)
O5—C301.234 (4)C17—H170.9300
C1—C281.382 (7)C19—C451.375 (4)
C1—C431.381 (5)C19—H190.9300
C1—H10.9300C20—C461.378 (5)
C2—C351.372 (6)C20—C211.391 (5)
C2—C361.382 (6)C20—H200.9300
C2—H2A0.9300C21—C311.358 (6)
C3—C441.360 (5)C21—H210.9300
C3—C81.387 (5)C22—C461.385 (4)
C3—H30.9300C22—C231.390 (5)
C4—C441.366 (6)C22—H220.9300
C4—C191.385 (5)C23—C311.365 (6)
C4—H40.9300C23—H230.9300
C5—C171.373 (6)C24—C261.385 (6)
C5—C401.387 (5)C24—C351.393 (6)
C5—H50.9300C25—C281.353 (11)
C6—C391.374 (5)C25—C271.363 (10)
C6—C371.382 (5)C25—H250.9300
C6—H60.9300C26—C321.334 (9)
C7—C411.350 (5)C26—H260.9300
C7—C91.364 (6)C27—H270.9300
C7—H70.9300C28—H280.9300
C8—C451.393 (4)C29—H290.9300
C8—H80.9300C30—C351.487 (5)
C9—C101.335 (6)C31—H310.9300
C9—H90.9300C32—C361.393 (8)
C10—C291.348 (7)C32—H320.9300
C10—H100.9300C36—H360.9300
C11—C431.380 (5)C37—H370.9300
C11—C271.397 (7)C38—H380.9300
C11—H110.9300C39—H390.9300
C12—C411.369 (5)C42—H420.9300
C12—C291.387 (6)C44—H440.9300
C45—Sn1—O1101.83 (11)C46—C20—H20119.5
C45—Sn1—C46123.43 (12)C21—C20—H20119.5
O1—Sn1—C4695.55 (11)C31—C21—C20120.0 (4)
C45—Sn1—C43114.36 (12)C31—C21—H21120.0
O1—Sn1—C4388.45 (11)C20—C21—H21120.0
C46—Sn1—C43119.57 (13)C46—C22—C23120.9 (4)
C45—Sn1—O484.32 (9)C46—C22—H22119.6
O1—Sn1—O4171.65 (9)C23—C22—H22119.6
C46—Sn1—O485.56 (10)C31—C23—C22119.8 (4)
C43—Sn1—O483.82 (11)C31—C23—H23120.1
O4—P1—C14111.35 (14)C22—C23—H23120.1
O4—P1—C41112.40 (14)O2—C24—C26118.2 (5)
C14—P1—C41106.59 (15)O2—C24—C35122.0 (4)
O4—P1—C40111.79 (13)C26—C24—C35119.8 (5)
C14—P1—C40106.75 (14)C28—C25—C27120.8 (6)
C41—P1—C40107.63 (15)C28—C25—H25119.6
C30—O1—Sn1117.4 (2)C27—C25—H25119.6
C24—O2—H2109.5C32—C26—C24119.9 (5)
P1—O4—Sn1164.85 (13)C32—C26—H26120.1
C28—C1—C43120.6 (5)C24—C26—H26120.1
C28—C1—H1119.7C25—C27—C11119.6 (6)
C43—C1—H1119.7C25—C27—H27120.2
C35—C2—C36121.0 (5)C11—C27—H27120.2
C35—C2—H2A119.5C25—C28—C1120.1 (6)
C36—C2—H2A119.5C25—C28—H28119.9
C44—C3—C8120.8 (4)C1—C28—H28119.9
C44—C3—H3119.6C10—C29—C12120.5 (4)
C8—C3—H3119.6C10—C29—H29119.7
C44—C4—C19120.5 (4)C12—C29—H29119.7
C44—C4—H4119.7O5—C30—O1122.7 (3)
C19—C4—H4119.7O5—C30—C35120.9 (3)
C17—C5—C40120.3 (4)O1—C30—C35116.4 (3)
C17—C5—H5119.8C21—C31—C23120.5 (4)
C40—C5—H5119.8C21—C31—H31119.8
C39—C6—C37119.7 (4)C23—C31—H31119.8
C39—C6—H6120.1C26—C32—C36122.1 (5)
C37—C6—H6120.1C26—C32—H32118.9
C41—C7—C9121.9 (4)C36—C32—H32118.9
C41—C7—H7119.0C2—C35—C24119.2 (4)
C9—C7—H7119.0C2—C35—C30121.4 (4)
C3—C8—C45119.9 (3)C24—C35—C30119.4 (4)
C3—C8—H8120.0C2—C36—C32117.9 (6)
C45—C8—H8120.0C2—C36—H36121.0
C10—C9—C7121.0 (4)C32—C36—H36121.0
C10—C9—H9119.5C14—C37—C6120.7 (3)
C7—C9—H9119.5C14—C37—H37119.7
C9—C10—C29118.8 (4)C6—C37—H37119.7
C9—C10—H10120.6C13—C38—C14120.2 (3)
C29—C10—H10120.6C13—C38—H38119.9
C43—C11—C27120.2 (5)C14—C38—H38119.9
C43—C11—H11119.9C13—C39—C6119.9 (3)
C27—C11—H11119.9C13—C39—H39120.0
C41—C12—C29120.5 (4)C6—C39—H39120.0
C41—C12—H12119.8C15—C40—C5118.2 (3)
C29—C12—H12119.8C15—C40—P1119.1 (2)
C39—C13—C38120.7 (4)C5—C40—P1122.7 (3)
C39—C13—H13119.6C7—C41—C12117.1 (4)
C38—C13—H13119.6C7—C41—P1119.4 (3)
C37—C14—C38118.7 (3)C12—C41—P1123.5 (3)
C37—C14—P1118.3 (2)C16—C42—C17120.3 (4)
C38—C14—P1122.8 (3)C16—C42—H42119.8
C40—C15—C16121.4 (4)C17—C42—H42119.8
C40—C15—H15119.3C11—C43—C1118.7 (4)
C16—C15—H15119.3C11—C43—Sn1121.9 (3)
C42—C16—C15119.3 (4)C1—C43—Sn1119.4 (3)
C42—C16—H16120.3C3—C44—C4119.6 (4)
C15—C16—H16120.3C3—C44—H44120.2
C42—C17—C5120.5 (5)C4—C44—H44120.2
C42—C17—H17119.8C19—C45—C8118.5 (3)
C5—C17—H17119.8C19—C45—Sn1118.8 (2)
C45—C19—C4120.6 (3)C8—C45—Sn1122.6 (2)
C45—C19—H19119.7C20—C46—C22118.0 (3)
C4—C19—H19119.7C20—C46—Sn1122.7 (2)
C46—C20—C21121.0 (4)C22—C46—Sn1119.3 (2)
C14—P1—O4—Sn1178.5 (5)P1—C14—C37—C6175.1 (3)
C41—P1—O4—Sn161.9 (6)C39—C6—C37—C140.7 (6)
C40—P1—O4—Sn159.2 (5)C39—C13—C38—C140.5 (6)
C44—C3—C8—C451.4 (5)C37—C14—C38—C130.1 (5)
C41—C7—C9—C101.0 (9)P1—C14—C38—C13175.5 (3)
C7—C9—C10—C292.3 (9)C38—C13—C39—C60.5 (6)
O4—P1—C14—C3728.6 (3)C37—C6—C39—C130.1 (7)
C41—P1—C14—C3794.4 (3)C16—C15—C40—C51.4 (6)
C40—P1—C14—C37150.8 (3)C16—C15—C40—P1176.7 (3)
O4—P1—C14—C38155.8 (3)C17—C5—C40—C151.8 (6)
C41—P1—C14—C3881.3 (3)C17—C5—C40—P1176.2 (4)
C40—P1—C14—C3833.5 (3)O4—P1—C40—C1532.3 (3)
C40—C15—C16—C420.3 (7)C14—P1—C40—C1589.7 (3)
C40—C5—C17—C421.2 (8)C41—P1—C40—C15156.2 (3)
C44—C4—C19—C450.9 (6)O4—P1—C40—C5149.8 (3)
C46—C20—C21—C310.7 (5)C14—P1—C40—C588.3 (3)
C46—C22—C23—C310.5 (6)C41—P1—C40—C525.9 (4)
O2—C24—C26—C32179.1 (5)C9—C7—C41—C120.0 (7)
C35—C24—C26—C320.4 (8)C9—C7—C41—P1179.3 (4)
C28—C25—C27—C112.2 (10)C29—C12—C41—C70.5 (8)
C43—C11—C27—C250.9 (7)C29—C12—C41—P1178.9 (5)
C27—C25—C28—C12.0 (10)O4—P1—C41—C735.5 (4)
C43—C1—C28—C250.6 (8)C14—P1—C41—C7157.7 (3)
C9—C10—C29—C122.7 (10)C40—P1—C41—C788.0 (4)
C41—C12—C29—C101.8 (10)O4—P1—C41—C12145.2 (4)
Sn1—O1—C30—O52.7 (4)C14—P1—C41—C1222.9 (4)
Sn1—O1—C30—C35176.1 (2)C40—P1—C41—C1291.3 (4)
C20—C21—C31—C231.0 (6)C15—C16—C42—C170.3 (8)
C22—C23—C31—C210.4 (6)C5—C17—C42—C160.2 (9)
C24—C26—C32—C361.0 (9)C27—C11—C43—C10.5 (6)
C36—C2—C35—C240.2 (6)C27—C11—C43—Sn1179.4 (3)
C36—C2—C35—C30178.3 (4)C28—C1—C43—C110.6 (6)
O2—C24—C35—C2179.6 (4)C28—C1—C43—Sn1179.3 (3)
C26—C24—C35—C20.9 (6)C8—C3—C44—C40.2 (6)
O2—C24—C35—C301.0 (6)C19—C4—C44—C31.3 (6)
C26—C24—C35—C30177.6 (4)C4—C19—C45—C80.8 (5)
O5—C30—C35—C2175.1 (3)C4—C19—C45—Sn1174.7 (3)
O1—C30—C35—C23.7 (5)C3—C8—C45—C191.9 (5)
O5—C30—C35—C246.3 (5)C3—C8—C45—Sn1173.4 (3)
O1—C30—C35—C24174.8 (3)C21—C20—C46—C220.1 (5)
C35—C2—C36—C321.1 (8)C21—C20—C46—Sn1178.4 (3)
C26—C32—C36—C21.8 (10)C23—C22—C46—C200.7 (5)
C38—C14—C37—C60.7 (6)C23—C22—C46—Sn1179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.821.822.546 (4)147
C8—H8···O50.932.433.071 (4)126
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University (Dakar, Sénégal) for financial support. The RS2E (French Network on Electrochemical Energy Storage) and ANR (Labex STORE-EX: grant ANR-10-LABX-0076) are acknowledged for funding of the X-ray diffractometer. The authors acknowledge Dr A. G. Oliver (University of Notre Dame, USA) for his help.

References

First citationBandoli, G., Bortolozzo, G., Clemente, D. A., Croatto, U. & Panattoni, C. (1970). J. Chem. Soc. A, pp. 2778–2780.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiop, C. A. K., Touré, A., Diop, L. & Welter, R. (2006). Acta Cryst. E62, m3338–m3340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C., Sun, J. & Zhang, R. (2006). J. Organomet. Chem. 691, 5873–5886.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOmae, I. (1989). Organotin Chemistry (Journal of Organometallic Chemistry Library), p. 21. Amsterdam: Elsevier.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRauf, M. K., Saeed, M. A., Din, I.-U., Bolte, M., Badshah, A. & Mirza, B. (2008). J. Organomet. Chem. 693, 3043–3048.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVollano, J. F., Day, R. O., Rau, D. N., Chandrasekhar, V. & Holmes, R. R. (1984). Inorg. Chem. 23, 3153–3160.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds