organic compounds
1-(3,4-Dimethoxyphenyl)ethanone
aDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, C10H12O3, has a single near planar molecule in the with the non-H atoms possessing a mean deviation from planarity of 0.132 Å. The molecules dimerize in the solid state through C—H⋯O interactions. These dimers are further linked through parallel slipped π–π interactions of the aryl rings [intercentroid distance = 3.5444 (11) Å, interplanar distance = 3.3998 (12) Å, slippage = 1.002 (2) Å].
Keywords: crystal structure; π–π interactions; ketones.
CCDC reference: 1515734
Structure description
Herein, we report the ). The structure has a single near planar molecule in the with the non-hydrogen atoms possessing a mean deviation from planarity of 0.132 Å. A closer look reveals a planar dimethoxy aryl unit with a mean deviation from planarity of only 0.033 Å, and an acetyl group that is rotated 16.83 (7)o from this plane. The structure exhibits bond distances and angles consistent with the structure of other 3,4-dimethoxy-substituted aryl compounds (de Ronde et al., 2016; Mills-Robles et al., 2015; Yang et al., 2011).
of 3,4-dimethoxyacetophenone (Fig. 1In the crystal, the molecule dimerizes through C9—H9A⋯O3 interactions (Table 1). This interaction is also observed in the propionyl derivative of this compound (Fun et al., 1997). These dimers are further linked through parallel slipped π–π interactions [intercentroid distance = 3.5444 (11) Å, interplanar distance = 3.3998 (12) Å, and slippage = 1.002 (2) Å]. These intermolecular interactions do not yield any infinite chains, sheets or networks in the structure. The packing of the title compound is shown in Fig. 2.
Synthesis and crystallization
A commercial sample (TCI) of 3,4-dimethoxyacetophenone was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its methylene chloride solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1515734
https://doi.org/10.1107/S2414314616017946/vm4018sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616017946/vm4018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616017946/vm4018Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).C10H12O3 | F(000) = 384 |
Mr = 180.20 | Dx = 1.283 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6345 reflections |
a = 7.9543 (7) Å | θ = 3.0–25.0° |
b = 13.3271 (11) Å | µ = 0.09 mm−1 |
c = 8.8107 (7) Å | T = 200 K |
β = 92.761 (3)° | PLATE, colourless |
V = 932.92 (13) Å3 | 0.18 × 0.1 × 0.05 mm |
Z = 4 |
Bruker D8 Venture CMOS diffractometer | 1717 independent reflections |
Radiation source: Mo | 1348 reflections with I > 2σ(I) |
TRIUMPH monochromator | Rint = 0.049 |
φ and ω scans | θmax = 25.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −9→9 |
Tmin = 0.308, Tmax = 0.331 | k = −16→16 |
22589 measured reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0459P)2 + 0.2372P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.096 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.17 e Å−3 |
1717 reflections | Δρmin = −0.15 e Å−3 |
122 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.027 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.96346 (14) | 0.59482 (10) | 0.63260 (13) | 0.0553 (4) | |
O2 | 0.55355 (12) | 0.52425 (8) | 0.17851 (10) | 0.0358 (3) | |
O3 | 0.28281 (12) | 0.61821 (8) | 0.23518 (11) | 0.0390 (3) | |
C1 | 0.7983 (2) | 0.65151 (14) | 0.83175 (17) | 0.0471 (4) | |
H1A | 0.7053 | 0.6122 | 0.8703 | 0.071* | |
H1B | 0.7707 | 0.7231 | 0.8360 | 0.071* | |
H1C | 0.9011 | 0.6385 | 0.8944 | 0.071* | |
C2 | 0.82541 (19) | 0.62201 (11) | 0.67004 (16) | 0.0346 (4) | |
C3 | 0.67942 (17) | 0.62562 (10) | 0.55786 (15) | 0.0287 (3) | |
C4 | 0.69107 (17) | 0.57335 (10) | 0.41998 (14) | 0.0277 (3) | |
H4 | 0.7914 | 0.5382 | 0.3995 | 0.033* | |
C5 | 0.55772 (17) | 0.57306 (10) | 0.31485 (14) | 0.0275 (3) | |
C6 | 0.40893 (17) | 0.62552 (10) | 0.34497 (15) | 0.0297 (3) | |
C7 | 0.39924 (18) | 0.67871 (11) | 0.47885 (16) | 0.0342 (4) | |
H7 | 0.3006 | 0.7158 | 0.4982 | 0.041* | |
C8 | 0.53410 (18) | 0.67777 (11) | 0.58520 (16) | 0.0339 (4) | |
H8 | 0.5261 | 0.7135 | 0.6779 | 0.041* | |
C9 | 0.69905 (19) | 0.46789 (12) | 0.14399 (16) | 0.0393 (4) | |
H9A | 0.6803 | 0.4353 | 0.0449 | 0.059* | |
H9B | 0.7207 | 0.4167 | 0.2224 | 0.059* | |
H9C | 0.7963 | 0.5129 | 0.1410 | 0.059* | |
C10 | 0.12522 (19) | 0.66319 (14) | 0.26553 (19) | 0.0480 (4) | |
H10A | 0.0433 | 0.6485 | 0.1818 | 0.072* | |
H10B | 0.1395 | 0.7360 | 0.2752 | 0.072* | |
H10C | 0.0846 | 0.6360 | 0.3604 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0393 (7) | 0.0773 (9) | 0.0483 (7) | 0.0084 (6) | −0.0082 (5) | −0.0194 (6) |
O2 | 0.0348 (6) | 0.0445 (6) | 0.0277 (5) | 0.0075 (5) | −0.0018 (4) | −0.0078 (4) |
O3 | 0.0308 (6) | 0.0485 (6) | 0.0374 (6) | 0.0064 (5) | −0.0026 (4) | −0.0009 (5) |
C1 | 0.0522 (10) | 0.0559 (10) | 0.0324 (8) | −0.0068 (8) | −0.0050 (7) | −0.0059 (8) |
C2 | 0.0391 (9) | 0.0297 (7) | 0.0348 (8) | −0.0045 (6) | −0.0005 (6) | −0.0038 (6) |
C3 | 0.0352 (8) | 0.0234 (7) | 0.0277 (7) | −0.0037 (6) | 0.0029 (6) | −0.0003 (5) |
C4 | 0.0292 (7) | 0.0259 (7) | 0.0284 (7) | 0.0007 (5) | 0.0035 (6) | 0.0004 (5) |
C5 | 0.0328 (7) | 0.0257 (7) | 0.0243 (7) | −0.0013 (6) | 0.0040 (5) | 0.0000 (5) |
C6 | 0.0301 (7) | 0.0280 (7) | 0.0310 (7) | −0.0007 (6) | 0.0005 (6) | 0.0052 (6) |
C7 | 0.0355 (8) | 0.0302 (8) | 0.0373 (8) | 0.0067 (6) | 0.0072 (6) | −0.0004 (6) |
C8 | 0.0425 (9) | 0.0296 (8) | 0.0301 (7) | −0.0001 (6) | 0.0062 (6) | −0.0052 (6) |
C9 | 0.0392 (9) | 0.0481 (9) | 0.0306 (7) | 0.0085 (7) | 0.0017 (6) | −0.0097 (7) |
C10 | 0.0315 (9) | 0.0570 (10) | 0.0553 (10) | 0.0088 (7) | −0.0002 (7) | 0.0018 (8) |
O1—C2 | 1.2169 (18) | C4—C5 | 1.3742 (19) |
O2—C5 | 1.3651 (16) | C5—C6 | 1.4107 (19) |
O2—C9 | 1.4249 (17) | C6—C7 | 1.382 (2) |
O3—C6 | 1.3631 (16) | C7—H7 | 0.9500 |
O3—C10 | 1.4263 (18) | C7—C8 | 1.390 (2) |
C1—H1A | 0.9800 | C8—H8 | 0.9500 |
C1—H1B | 0.9800 | C9—H9A | 0.9800 |
C1—H1C | 0.9800 | C9—H9B | 0.9800 |
C1—C2 | 1.504 (2) | C9—H9C | 0.9800 |
C2—C3 | 1.489 (2) | C10—H10A | 0.9800 |
C3—C4 | 1.4073 (19) | C10—H10B | 0.9800 |
C3—C8 | 1.380 (2) | C10—H10C | 0.9800 |
C4—H4 | 0.9500 | ||
C5—O2—C9 | 116.97 (10) | O3—C6—C7 | 124.97 (12) |
C6—O3—C10 | 117.41 (11) | C7—C6—C5 | 119.78 (13) |
H1A—C1—H1B | 109.5 | C6—C7—H7 | 120.1 |
H1A—C1—H1C | 109.5 | C6—C7—C8 | 119.86 (13) |
H1B—C1—H1C | 109.5 | C8—C7—H7 | 120.1 |
C2—C1—H1A | 109.5 | C3—C8—C7 | 120.84 (13) |
C2—C1—H1B | 109.5 | C3—C8—H8 | 119.6 |
C2—C1—H1C | 109.5 | C7—C8—H8 | 119.6 |
O1—C2—C1 | 120.49 (13) | O2—C9—H9A | 109.5 |
O1—C2—C3 | 120.98 (13) | O2—C9—H9B | 109.5 |
C3—C2—C1 | 118.53 (13) | O2—C9—H9C | 109.5 |
C4—C3—C2 | 118.38 (12) | H9A—C9—H9B | 109.5 |
C8—C3—C2 | 122.24 (12) | H9A—C9—H9C | 109.5 |
C8—C3—C4 | 119.38 (13) | H9B—C9—H9C | 109.5 |
C3—C4—H4 | 119.9 | O3—C10—H10A | 109.5 |
C5—C4—C3 | 120.16 (13) | O3—C10—H10B | 109.5 |
C5—C4—H4 | 119.9 | O3—C10—H10C | 109.5 |
O2—C5—C4 | 125.43 (12) | H10A—C10—H10B | 109.5 |
O2—C5—C6 | 114.62 (12) | H10A—C10—H10C | 109.5 |
C4—C5—C6 | 119.94 (12) | H10B—C10—H10C | 109.5 |
O3—C6—C5 | 115.25 (12) | ||
O1—C2—C3—C4 | 16.3 (2) | C4—C3—C8—C7 | 0.4 (2) |
O1—C2—C3—C8 | −164.02 (15) | C4—C5—C6—O3 | −178.32 (12) |
O2—C5—C6—O3 | 1.10 (17) | C4—C5—C6—C7 | 1.3 (2) |
O2—C5—C6—C7 | −179.26 (12) | C5—C6—C7—C8 | −2.0 (2) |
O3—C6—C7—C8 | 177.64 (13) | C6—C7—C8—C3 | 1.1 (2) |
C1—C2—C3—C4 | −162.91 (13) | C8—C3—C4—C5 | −1.1 (2) |
C1—C2—C3—C8 | 16.7 (2) | C9—O2—C5—C4 | 1.0 (2) |
C2—C3—C4—C5 | 178.62 (12) | C9—O2—C5—C6 | −178.43 (12) |
C2—C3—C8—C7 | −179.25 (13) | C10—O3—C6—C5 | 175.11 (13) |
C3—C4—C5—O2 | −179.16 (12) | C10—O3—C6—C7 | −4.5 (2) |
C3—C4—C5—C6 | 0.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O3i | 0.98 | 2.60 | 3.5418 (17) | 162 |
Symmetry code: (i) −x+1, −y+1, −z. |
Acknowledgements
We greatly acknowledge support from the Massachusetts Clean Energy Center and the National Science Foundation (CHE-1429086).
References
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Chinnakali, K., Sivakumar, K., Sam, T.-W. & How, S.-E. (1997). Acta Cryst. C53, 1859–1862. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mills-Robles, H. A., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o1019. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, B., Han, C., Song, X., Chen, G. & Song, X. (2011). Acta Cryst. E67, o2568. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.