organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(3,4-Di­meth­­oxy­phen­yl)ethanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 November 2016; accepted 8 November 2016; online 10 November 2016)

The title compound, C10H12O3, has a single near planar mol­ecule in the asymmetric unit, with the non-H atoms possessing a mean deviation from planarity of 0.132 Å. The mol­ecules dimerize in the solid state through C—H⋯O inter­actions. These dimers are further linked through parallel slipped ππ inter­actions of the aryl rings [inter­centroid distance = 3.5444 (11) Å, inter­planar distance = 3.3998 (12) Å, slippage = 1.002 (2) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Herein, we report the crystal structure of 3,4-di­meth­oxy­aceto­phenone (Fig. 1[link]). The structure has a single near planar mol­ecule in the asymmetric unit, with the non-hydrogen atoms possessing a mean deviation from planarity of 0.132 Å. A closer look reveals a planar dimeth­oxy aryl unit with a mean deviation from planarity of only 0.033 Å, and an acetyl group that is rotated 16.83 (7)o from this plane. The structure exhibits bond distances and angles consistent with the structure of other 3,4-dimeth­oxy-substituted aryl compounds (de Ronde et al., 2016[Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.]; Mills-Robles et al., 2015[Mills-Robles, H. A., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o1019.]; Yang et al., 2011[Yang, B., Han, C., Song, X., Chen, G. & Song, X. (2011). Acta Cryst. E67, o2568.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

In the crystal, the mol­ecule dimerizes through C9—H9A⋯O3 inter­actions (Table 1[link]). This inter­action is also observed in the propionyl derivative of this compound (Fun et al., 1997[Fun, H.-K., Chinnakali, K., Sivakumar, K., Sam, T.-W. & How, S.-E. (1997). Acta Cryst. C53, 1859-1862.]). These dimers are further linked through parallel slipped ππ inter­actions [inter­centroid distance = 3.5444 (11) Å, inter­planar distance = 3.3998 (12) Å, and slippage = 1.002 (2) Å]. These inter­molecular inter­actions do not yield any infinite chains, sheets or networks in the structure. The packing of the title compound is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O3i 0.98 2.60 3.5418 (17) 162
Symmetry code: (i) -x+1, -y+1, -z.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound, viewed along the a axis.

Synthesis and crystallization

A commercial sample (TCI) of 3,4-di­meth­oxy­aceto­phenone was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its methyl­ene chloride solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H12O3
Mr 180.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 7.9543 (7), 13.3271 (11), 8.8107 (7)
β (°) 92.761 (3)
V3) 932.92 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.18 × 0.1 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.308, 0.331
No. of measured, independent and observed [I > 2σ(I)] reflections 22589, 1717, 1348
Rint 0.049
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.04
No. of reflections 1717
No. of parameters 122
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

1-(3,4-Dimethoxyphenyl)ethanone top
Crystal data top
C10H12O3F(000) = 384
Mr = 180.20Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6345 reflections
a = 7.9543 (7) Åθ = 3.0–25.0°
b = 13.3271 (11) ŵ = 0.09 mm1
c = 8.8107 (7) ÅT = 200 K
β = 92.761 (3)°PLATE, colourless
V = 932.92 (13) Å30.18 × 0.1 × 0.05 mm
Z = 4
Data collection top
Bruker D8 Venture CMOS
diffractometer
1717 independent reflections
Radiation source: Mo1348 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.049
φ and ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 99
Tmin = 0.308, Tmax = 0.331k = 1616
22589 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.2372P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.17 e Å3
1717 reflectionsΔρmin = 0.15 e Å3
122 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.027 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.96346 (14)0.59482 (10)0.63260 (13)0.0553 (4)
O20.55355 (12)0.52425 (8)0.17851 (10)0.0358 (3)
O30.28281 (12)0.61821 (8)0.23518 (11)0.0390 (3)
C10.7983 (2)0.65151 (14)0.83175 (17)0.0471 (4)
H1A0.70530.61220.87030.071*
H1B0.77070.72310.83600.071*
H1C0.90110.63850.89440.071*
C20.82541 (19)0.62201 (11)0.67004 (16)0.0346 (4)
C30.67942 (17)0.62562 (10)0.55786 (15)0.0287 (3)
C40.69107 (17)0.57335 (10)0.41998 (14)0.0277 (3)
H40.79140.53820.39950.033*
C50.55772 (17)0.57306 (10)0.31485 (14)0.0275 (3)
C60.40893 (17)0.62552 (10)0.34497 (15)0.0297 (3)
C70.39924 (18)0.67871 (11)0.47885 (16)0.0342 (4)
H70.30060.71580.49820.041*
C80.53410 (18)0.67777 (11)0.58520 (16)0.0339 (4)
H80.52610.71350.67790.041*
C90.69905 (19)0.46789 (12)0.14399 (16)0.0393 (4)
H9A0.68030.43530.04490.059*
H9B0.72070.41670.22240.059*
H9C0.79630.51290.14100.059*
C100.12522 (19)0.66319 (14)0.26553 (19)0.0480 (4)
H10A0.04330.64850.18180.072*
H10B0.13950.73600.27520.072*
H10C0.08460.63600.36040.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0393 (7)0.0773 (9)0.0483 (7)0.0084 (6)0.0082 (5)0.0194 (6)
O20.0348 (6)0.0445 (6)0.0277 (5)0.0075 (5)0.0018 (4)0.0078 (4)
O30.0308 (6)0.0485 (6)0.0374 (6)0.0064 (5)0.0026 (4)0.0009 (5)
C10.0522 (10)0.0559 (10)0.0324 (8)0.0068 (8)0.0050 (7)0.0059 (8)
C20.0391 (9)0.0297 (7)0.0348 (8)0.0045 (6)0.0005 (6)0.0038 (6)
C30.0352 (8)0.0234 (7)0.0277 (7)0.0037 (6)0.0029 (6)0.0003 (5)
C40.0292 (7)0.0259 (7)0.0284 (7)0.0007 (5)0.0035 (6)0.0004 (5)
C50.0328 (7)0.0257 (7)0.0243 (7)0.0013 (6)0.0040 (5)0.0000 (5)
C60.0301 (7)0.0280 (7)0.0310 (7)0.0007 (6)0.0005 (6)0.0052 (6)
C70.0355 (8)0.0302 (8)0.0373 (8)0.0067 (6)0.0072 (6)0.0004 (6)
C80.0425 (9)0.0296 (8)0.0301 (7)0.0001 (6)0.0062 (6)0.0052 (6)
C90.0392 (9)0.0481 (9)0.0306 (7)0.0085 (7)0.0017 (6)0.0097 (7)
C100.0315 (9)0.0570 (10)0.0553 (10)0.0088 (7)0.0002 (7)0.0018 (8)
Geometric parameters (Å, º) top
O1—C21.2169 (18)C4—C51.3742 (19)
O2—C51.3651 (16)C5—C61.4107 (19)
O2—C91.4249 (17)C6—C71.382 (2)
O3—C61.3631 (16)C7—H70.9500
O3—C101.4263 (18)C7—C81.390 (2)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—H9A0.9800
C1—H1C0.9800C9—H9B0.9800
C1—C21.504 (2)C9—H9C0.9800
C2—C31.489 (2)C10—H10A0.9800
C3—C41.4073 (19)C10—H10B0.9800
C3—C81.380 (2)C10—H10C0.9800
C4—H40.9500
C5—O2—C9116.97 (10)O3—C6—C7124.97 (12)
C6—O3—C10117.41 (11)C7—C6—C5119.78 (13)
H1A—C1—H1B109.5C6—C7—H7120.1
H1A—C1—H1C109.5C6—C7—C8119.86 (13)
H1B—C1—H1C109.5C8—C7—H7120.1
C2—C1—H1A109.5C3—C8—C7120.84 (13)
C2—C1—H1B109.5C3—C8—H8119.6
C2—C1—H1C109.5C7—C8—H8119.6
O1—C2—C1120.49 (13)O2—C9—H9A109.5
O1—C2—C3120.98 (13)O2—C9—H9B109.5
C3—C2—C1118.53 (13)O2—C9—H9C109.5
C4—C3—C2118.38 (12)H9A—C9—H9B109.5
C8—C3—C2122.24 (12)H9A—C9—H9C109.5
C8—C3—C4119.38 (13)H9B—C9—H9C109.5
C3—C4—H4119.9O3—C10—H10A109.5
C5—C4—C3120.16 (13)O3—C10—H10B109.5
C5—C4—H4119.9O3—C10—H10C109.5
O2—C5—C4125.43 (12)H10A—C10—H10B109.5
O2—C5—C6114.62 (12)H10A—C10—H10C109.5
C4—C5—C6119.94 (12)H10B—C10—H10C109.5
O3—C6—C5115.25 (12)
O1—C2—C3—C416.3 (2)C4—C3—C8—C70.4 (2)
O1—C2—C3—C8164.02 (15)C4—C5—C6—O3178.32 (12)
O2—C5—C6—O31.10 (17)C4—C5—C6—C71.3 (2)
O2—C5—C6—C7179.26 (12)C5—C6—C7—C82.0 (2)
O3—C6—C7—C8177.64 (13)C6—C7—C8—C31.1 (2)
C1—C2—C3—C4162.91 (13)C8—C3—C4—C51.1 (2)
C1—C2—C3—C816.7 (2)C9—O2—C5—C41.0 (2)
C2—C3—C4—C5178.62 (12)C9—O2—C5—C6178.43 (12)
C2—C3—C8—C7179.25 (13)C10—O3—C6—C5175.11 (13)
C3—C4—C5—O2179.16 (12)C10—O3—C6—C74.5 (2)
C3—C4—C5—C60.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.982.603.5418 (17)162
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We greatly acknowledge support from the Massachusetts Clean Energy Center and the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chinnakali, K., Sivakumar, K., Sam, T.-W. & How, S.-E. (1997). Acta Cryst. C53, 1859–1862.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMills-Robles, H. A., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o1019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRonde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, B., Han, C., Song, X., Chen, G. & Song, X. (2011). Acta Cryst. E67, o2568.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds