organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2Z)-2-Benzyl­­idene-4-[(1-benzyl-1H-1,2,3-triazol-4-yl)meth­yl]-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ellouz.chimie@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 29 October 2016; accepted 14 November 2016; online 18 November 2016)

In the title mol­ecule, C25H20N4OS, the dihedral angle between the plane of the di­hydro­thia­zine ring and that of the fused C6 ring is 1.0 (2)°, indicating a slight twist in the di­hydro­benzo­thio­phene unit; there is a roughly perpendicular relationship between the fused C6 ring and the triazole ring [dihedral angle = 73.2 (1)°]. The packing comprises chains running parallel to the c axis formed by weak C—H⋯O hydrogen bonds, with the benzyl rings inter­calated between adjacent chains. The benzyl ring is statistically disordered. The sample was refined as a twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-Benzo­thia­zine derivatives possess a wide spectrum of biological and pharmacological activities due to the presence of a fold along the nitro­gen⋯sulfur axis, considered to be one of the structural features responsible for their activities (Gupta & Gupta, 2011[Gupta, R. & Gupta, A. (2011). Heteroletters, 1, 351-358.]). A variety of methods have been used to synthesize 1,4-benzo­thia­zine derivatives (Parai & Panda, 2009[Parai, M. K. & Panda, G. A. (2009). Tetrahedron Lett. 50, 4703-4705.]; Saadouni et al., 2014[Saadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun, 7, 77-84.]). Some of the diverse biological activities exhibited by 1,4-benzo­thia­zines (Fringuelli et al., 2005[Fringuelli, R., Milanese, L. & Schiaffella, F. (2005). Mini Rev. Med. Chem. 5, 1061-1073.]) are as anti­microbial (Gautam et al., 2013[Gautam, N., Bishnoi, A. K., Guleria, A., Jangid, D. K., Gupta, S. K. & Gautam, D. C. (2013). Heterocycl. Commun. 19, 37-42.]), anti­fungal (Aloui et al., 2009[Aloui, S., Forsal, I., Sfaira, M., Touhami, M. E., Taleb, M., Baba, M. F. & Daoudi, M. (2009). Port. Elec. Acta, 27, 599-613.]) and anti-oxidant agents (Kumar et al., 2010[Kumar, M., Sharma, K., Samarth, R. M. & Kumar, A. (2010). Eur. J. Med. Chem. 45, 4467-4472.]) as well as acting as inhibitors of betaribosidases (Gao & Hollingsworth, 2005[Gao, L. & Hollingsworth, R. (2005). J. Org. Chem. 70, 9013-9016.]), as potential vasodilators (Deshmukh & Mulik, 2004[Deshmukh, M. B. & Mulik, A. R. (2004). E. J. Chem. 1, 206-210.]) and as potent lipoxygenase inhibitors (Bakavoli et al., 2007[Bakavoli, M., Nikpour, M., Rahimizadeh, M., Saberi, M. R. & Sadeghian, H. (2007). Bioorg. Med. Chem. 15, 2120-2126.]). In addition, 1,4-benzo­thia­zines are the basis for novel dyes (Podsiadły, 2009[Podsiadły, R. (2009). J. Photochem. Photobiol. Chem. 202, 115-121.]). Some relevant structures of 1,4-benzo­thia­zine derivatives have been published (Ellouz, et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]; Sebbar et al., 2014[Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o686.]; Zerzouf et al., 2001[Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498-o499.]).

As a continuation of our studies of substituted 1,4-benzo­thia­zine derivatives (Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]; Sebbar et al., 2015[Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o999.]), we report the synthesis of a new 1,4-benzo­thia­zine derivative which is built from two fused six-membered rings linked to a 1,2,3-triazole ring to which is attached a benzyl groups (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids.

The di­hydro­thia­zine ring is slightly puckered as indicated by the deviations of 0.043 (2) and −0.041 (2) Å for C8 and N1, respectively, from the least-squares plane through the six atoms of this ring. The dihedral angle between this plane and that of the C1–C6 ring is 1.0 (2)°, indicating a slight twist in the di­hydro­benzo­thia­zine unit. Dihedral angles between the C1–C6 ring and, respectively, the C10–C15 and triazole rings are 0.9 (2) and 73.2 (1)° while that between the triazole and C20–C25 rings is 86.7 (2)°. The C20–C25 ring is rotationally disordered over two resolved sites with approximately equal occupancies and having the ipso and para carbon atoms (C20, C20A, C23, C23A) almost in common. The dihedral angle between the mean planes of the two components of the disorder is ca 59°. The packing comprises chains running parallel to the c axis formed by weak C19—H19A⋯O1i [symmetry code: (i) x, −y + [{1\over 2}], z − [{1\over 2}]] hydrogen bonds with the benzyl groups C19–C25 inter­calated between adjacent chains (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O1i 0.99 2.55 3.395 (4) 144
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the b axis with C—H⋯O hydrogen bonds shown as dotted lines.

Synthesis and crystallization

To a solution of 2-benzyl­idene-4-(prop-2-yn-1-yl)-2H-1,4-benzo­thia­zin-3-one (0.2 g, 0.69 mmol) in ethanol (15 ml) was added benzyl azide (0.14 g, 1.03 mmol). The mixture was stirred under reflux for 24 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using a 9/1 (v/v) mixture of hexane and ethyl acetate. Crystals were obtained when the solvent was allowed to evaporate. The solid product was purified by recrystallization from ethanol solution to afford green crystals in 65% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The benzyl group C19–C25 is disordered over two sets of sites with approximately equal occupancies. The two components of the disorder of the benzene ring were refined as rigid hexa­gons. The final stages of the refinement were performed using the full, two-component, twinned data file generated by TWINABS (Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.]) since analysis of 2237 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.]) had shown the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c* axis. Two reflections, i.e. ([\overline{1}]14) and ([\overline{1}]18), were omitted owing to poor agreement.

Table 2
Experimental details

Crystal data
Chemical formula C25H20N4OS
Mr 424.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 21.8833 (8), 5.7007 (2), 16.8054 (6)
β (°) 100.234 (1)
V3) 2063.12 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.60
Crystal size (mm) 0.20 × 0.14 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.80, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 23953, 7028, 6233
Rint 0.046
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.154, 1.10
No. of reflections 7028
No. of parameters 276
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.45
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

(2Z)-2-Benzylidene-4-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]-3,4-dihydro-2H-1,4-benzothiazin-3-one top
Crystal data top
C25H20N4OSF(000) = 888
Mr = 424.51Dx = 1.367 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 21.8833 (8) ÅCell parameters from 9969 reflections
b = 5.7007 (2) Åθ = 3.7–72.3°
c = 16.8054 (6) ŵ = 1.60 mm1
β = 100.234 (1)°T = 150 K
V = 2063.12 (13) Å3Thick plate, pale yellow
Z = 40.20 × 0.14 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
7028 independent reflections
Radiation source: INCOATEC IµS micro-focus source6233 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.1°
ω scansh = 2726
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 66
Tmin = 0.80, Tmax = 0.93l = 2020
23953 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0465P)2 + 2.5618P]
where P = (Fo2 + 2Fc2)/3
7028 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.45 e Å3
Special details top

Experimental. Analysis of 2237 reflections having I/σ(I) > 12 and chosen from the full data set withCELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi-component version ofSAINT under control of the two-component orientation filegenerated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The benzyl group C19–C25 is disordered over two resolved sites with approximately equal occupancies. The two components of the benzene ring were refined as rigid hexagons. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.88790 (3)0.42683 (15)0.76061 (5)0.0284 (2)
O10.70554 (9)0.3764 (4)0.72354 (15)0.0342 (5)
N10.77326 (11)0.1308 (4)0.67988 (15)0.0223 (5)
N20.68783 (12)0.1707 (5)0.50832 (16)0.0297 (6)
N30.66341 (13)0.0963 (5)0.43493 (17)0.0313 (6)
N40.65522 (11)0.1371 (5)0.44063 (16)0.0261 (6)
C10.83238 (13)0.0659 (5)0.66352 (17)0.0220 (6)
C20.83797 (15)0.1250 (6)0.61264 (19)0.0273 (7)
H20.80180.20750.58810.033*
C30.89534 (16)0.1945 (6)0.59781 (19)0.0326 (7)
H30.89830.32520.56370.039*
C40.94865 (15)0.0745 (6)0.6324 (2)0.0328 (7)
H40.98810.12270.62210.039*
C50.94397 (14)0.1147 (6)0.68178 (19)0.0300 (7)
H50.98030.19710.70570.036*
C60.88592 (13)0.1866 (5)0.69698 (17)0.0230 (6)
C70.81087 (13)0.4751 (5)0.76739 (17)0.0211 (6)
C80.75995 (13)0.3258 (5)0.72220 (18)0.0230 (6)
C90.79322 (14)0.6470 (5)0.81425 (18)0.0247 (6)
H90.74980.65360.81410.030*
C100.82944 (14)0.8232 (5)0.86485 (18)0.0241 (6)
C110.89435 (15)0.8496 (6)0.8771 (2)0.0302 (7)
H110.91860.74130.85310.036*
C120.92330 (17)1.0315 (6)0.9238 (2)0.0369 (8)
H120.96721.04660.93120.044*
C130.88953 (18)1.1910 (6)0.9598 (2)0.0369 (8)
H130.90981.31640.99110.044*
C140.82594 (18)1.1669 (7)0.9499 (2)0.0385 (8)
H140.80241.27600.97470.046*
C150.79610 (16)0.9849 (6)0.9041 (2)0.0311 (7)
H150.75240.96870.89900.037*
C160.71955 (13)0.0199 (6)0.64796 (18)0.0249 (6)
H16A0.68600.01100.67910.030*
H16B0.73200.18610.65670.030*
C170.69457 (13)0.0164 (5)0.56004 (18)0.0227 (6)
C180.67379 (13)0.2130 (6)0.51696 (18)0.0246 (6)
H180.67270.36890.53660.030*
C190.62386 (14)0.2704 (7)0.37012 (18)0.0316 (7)
H19A0.62950.18890.31990.038*
H19B0.64280.42800.37010.038*
C200.55570 (13)0.2949 (8)0.3717 (3)0.0255 (7)0.503 (3)
C210.52512 (18)0.4923 (8)0.3359 (3)0.0379 (12)0.503 (3)
H210.54750.60870.31260.045*0.503 (3)
C220.46179 (18)0.5194 (7)0.3343 (3)0.0432 (13)0.503 (3)
H220.44090.65430.30990.052*0.503 (3)
C230.42904 (13)0.3490 (9)0.3685 (4)0.0393 (9)0.503 (3)
H230.38580.36750.36740.047*0.503 (3)
C240.45962 (18)0.1516 (8)0.4042 (3)0.0436 (13)0.503 (3)
H240.43720.03520.42760.052*0.503 (3)
C250.52295 (18)0.1245 (7)0.4058 (3)0.0350 (11)0.503 (3)
H250.54390.01040.43020.042*0.503 (3)
C20A0.55436 (12)0.2896 (9)0.3669 (3)0.0255 (7)0.497 (3)
C21A0.53085 (17)0.4827 (8)0.4020 (3)0.0379 (12)0.497 (3)
H21A0.55830.59960.42800.045*0.497 (3)
C22A0.46723 (19)0.5046 (8)0.3990 (3)0.0432 (13)0.497 (3)
H22A0.45120.63650.42300.052*0.497 (3)
C23A0.42711 (13)0.3335 (9)0.3609 (4)0.0393 (9)0.497 (3)
H23A0.38360.34850.35890.047*0.497 (3)
C24A0.45062 (17)0.1404 (8)0.3258 (3)0.0436 (13)0.497 (3)
H24A0.42320.02350.29980.052*0.497 (3)
C25A0.51425 (19)0.1185 (7)0.3288 (3)0.0350 (11)0.497 (3)
H25A0.53030.01340.30480.042*0.497 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0176 (3)0.0335 (4)0.0335 (4)0.0004 (3)0.0028 (3)0.0095 (3)
O10.0164 (10)0.0406 (14)0.0449 (14)0.0019 (9)0.0033 (9)0.0071 (11)
N10.0181 (11)0.0242 (13)0.0236 (12)0.0010 (10)0.0010 (9)0.0008 (10)
N20.0276 (14)0.0271 (15)0.0320 (14)0.0011 (11)0.0009 (11)0.0045 (11)
N30.0310 (14)0.0301 (15)0.0308 (14)0.0022 (11)0.0001 (11)0.0032 (12)
N40.0201 (12)0.0288 (14)0.0281 (13)0.0005 (10)0.0006 (10)0.0033 (11)
C10.0204 (14)0.0265 (16)0.0192 (13)0.0044 (11)0.0034 (11)0.0052 (12)
C20.0269 (15)0.0266 (17)0.0272 (15)0.0037 (13)0.0012 (12)0.0000 (13)
C30.0331 (17)0.0348 (18)0.0299 (16)0.0095 (15)0.0053 (13)0.0054 (13)
C40.0258 (16)0.041 (2)0.0323 (17)0.0106 (14)0.0066 (13)0.0033 (15)
C50.0201 (14)0.042 (2)0.0271 (16)0.0026 (13)0.0023 (12)0.0024 (14)
C60.0218 (14)0.0279 (16)0.0186 (13)0.0041 (12)0.0016 (11)0.0018 (11)
C70.0183 (13)0.0239 (15)0.0203 (14)0.0004 (11)0.0013 (10)0.0027 (11)
C80.0203 (14)0.0253 (16)0.0230 (14)0.0004 (11)0.0024 (11)0.0035 (12)
C90.0214 (14)0.0251 (16)0.0277 (15)0.0020 (12)0.0046 (11)0.0019 (12)
C100.0280 (15)0.0217 (16)0.0231 (14)0.0011 (12)0.0061 (12)0.0024 (11)
C110.0294 (16)0.0286 (17)0.0343 (17)0.0034 (13)0.0101 (13)0.0036 (14)
C120.0386 (18)0.035 (2)0.0363 (18)0.0125 (15)0.0044 (14)0.0010 (15)
C130.054 (2)0.0260 (18)0.0285 (16)0.0072 (16)0.0007 (15)0.0017 (13)
C140.052 (2)0.032 (2)0.0304 (17)0.0071 (16)0.0044 (15)0.0067 (14)
C150.0323 (17)0.0309 (18)0.0302 (16)0.0061 (13)0.0054 (13)0.0014 (14)
C160.0220 (14)0.0253 (16)0.0264 (15)0.0041 (12)0.0017 (11)0.0019 (12)
C170.0150 (13)0.0235 (15)0.0285 (15)0.0015 (11)0.0005 (11)0.0024 (12)
C180.0208 (14)0.0236 (16)0.0289 (15)0.0014 (11)0.0027 (11)0.0020 (12)
C190.0228 (15)0.043 (2)0.0274 (15)0.0015 (14)0.0005 (12)0.0090 (15)
C200.0208 (14)0.0297 (17)0.0242 (15)0.0009 (12)0.0006 (11)0.0024 (13)
C210.029 (2)0.038 (3)0.045 (3)0.004 (2)0.002 (2)0.002 (3)
C220.032 (3)0.041 (3)0.055 (3)0.006 (2)0.005 (3)0.008 (3)
C230.0213 (16)0.045 (2)0.051 (2)0.0018 (15)0.0041 (15)0.0034 (18)
C240.025 (2)0.042 (3)0.062 (3)0.007 (2)0.004 (2)0.003 (3)
C250.026 (2)0.032 (3)0.046 (3)0.0020 (19)0.003 (2)0.000 (2)
C20A0.0208 (14)0.0297 (17)0.0242 (15)0.0009 (12)0.0006 (11)0.0024 (13)
C21A0.029 (2)0.038 (3)0.045 (3)0.004 (2)0.002 (2)0.002 (3)
C22A0.032 (3)0.041 (3)0.055 (3)0.006 (2)0.005 (3)0.008 (3)
C23A0.0213 (16)0.045 (2)0.051 (2)0.0018 (15)0.0041 (15)0.0034 (18)
C24A0.025 (2)0.042 (3)0.062 (3)0.007 (2)0.004 (2)0.003 (3)
C25A0.026 (2)0.032 (3)0.046 (3)0.0020 (19)0.003 (2)0.000 (2)
Geometric parameters (Å, º) top
S1—C71.732 (3)C14—H140.9500
S1—C61.733 (3)C15—H150.9500
O1—C81.229 (4)C16—C171.496 (4)
N1—C81.378 (4)C16—H16A0.9900
N1—C11.419 (4)C16—H16B0.9900
N1—C161.478 (4)C17—C181.367 (4)
N2—N31.324 (4)C18—H180.9500
N2—C171.367 (4)C19—C201.503 (4)
N3—N41.348 (4)C19—C20A1.516 (4)
N4—C181.346 (4)C19—H19A0.9900
N4—C191.471 (4)C19—H19B0.9900
C1—C61.389 (4)C20—C211.3900
C1—C21.402 (4)C20—C251.3900
C2—C31.381 (5)C21—C221.3900
C2—H20.9500C21—H210.9500
C3—C41.388 (5)C22—C231.3900
C3—H30.9500C22—H220.9500
C4—C51.376 (5)C23—C241.3900
C4—H40.9500C23—H230.9500
C5—C61.401 (4)C24—C251.3900
C5—H50.9500C24—H240.9500
C7—C91.356 (4)C25—H250.9500
C7—C81.497 (4)C20A—C21A1.3900
C9—C101.456 (4)C20A—C25A1.3900
C9—H90.9500C21A—C22A1.3900
C10—C111.407 (4)C21A—H21A0.9500
C10—C151.410 (4)C22A—C23A1.3900
C11—C121.384 (5)C22A—H22A0.9500
C11—H110.9500C23A—C24A1.3900
C12—C131.377 (5)C23A—H23A0.9500
C12—H120.9500C24A—C25A1.3900
C13—C141.379 (5)C24A—H24A0.9500
C13—H130.9500C25A—H25A0.9500
C14—C151.384 (5)
C7—S1—C6104.38 (14)N1—C16—H16A108.8
C8—N1—C1126.5 (2)C17—C16—H16A108.8
C8—N1—C16115.4 (2)N1—C16—H16B108.8
C1—N1—C16118.1 (3)C17—C16—H16B108.8
N3—N2—C17108.8 (3)H16A—C16—H16B107.7
N2—N3—N4106.7 (3)N2—C17—C18108.3 (3)
C18—N4—N3111.3 (3)N2—C17—C16120.0 (3)
C18—N4—C19128.3 (3)C18—C17—C16131.7 (3)
N3—N4—C19120.1 (3)N4—C18—C17104.9 (3)
C6—C1—C2118.2 (3)N4—C18—H18127.6
C6—C1—N1121.7 (3)C17—C18—H18127.6
C2—C1—N1120.1 (3)N4—C19—C20110.9 (3)
C3—C2—C1120.9 (3)N4—C19—C20A112.8 (3)
C3—C2—H2119.6N4—C19—H19A109.5
C1—C2—H2119.6C20—C19—H19A109.5
C2—C3—C4120.4 (3)N4—C19—H19B109.5
C2—C3—H3119.8C20—C19—H19B109.5
C4—C3—H3119.8H19A—C19—H19B108.1
C5—C4—C3119.5 (3)C21—C20—C25120.0
C5—C4—H4120.3C21—C20—C19118.1 (3)
C3—C4—H4120.3C25—C20—C19121.9 (3)
C4—C5—C6120.4 (3)C22—C21—C20120.0
C4—C5—H5119.8C22—C21—H21120.0
C6—C5—H5119.8C20—C21—H21120.0
C1—C6—C5120.5 (3)C21—C22—C23120.0
C1—C6—S1124.6 (2)C21—C22—H22120.0
C5—C6—S1114.8 (2)C23—C22—H22120.0
C9—C7—C8116.3 (3)C24—C23—C22120.0
C9—C7—S1122.3 (2)C24—C23—H23120.0
C8—C7—S1121.4 (2)C22—C23—H23120.0
O1—C8—N1119.5 (3)C25—C24—C23120.0
O1—C8—C7119.6 (3)C25—C24—H24120.0
N1—C8—C7120.9 (2)C23—C24—H24120.0
C7—C9—C10131.0 (3)C24—C25—C20120.0
C7—C9—H9114.5C24—C25—H25120.0
C10—C9—H9114.5C20—C25—H25120.0
C11—C10—C15117.0 (3)C21A—C20A—C25A120.0
C11—C10—C9126.2 (3)C21A—C20A—C19119.1 (3)
C15—C10—C9116.8 (3)C25A—C20A—C19120.9 (3)
C12—C11—C10120.8 (3)C20A—C21A—C22A120.0
C12—C11—H11119.6C20A—C21A—H21A120.0
C10—C11—H11119.6C22A—C21A—H21A120.0
C13—C12—C11121.1 (3)C23A—C22A—C21A120.0
C13—C12—H12119.5C23A—C22A—H22A120.0
C11—C12—H12119.5C21A—C22A—H22A120.0
C12—C13—C14119.3 (3)C22A—C23A—C24A120.0
C12—C13—H13120.3C22A—C23A—H23A120.0
C14—C13—H13120.3C24A—C23A—H23A120.0
C13—C14—C15120.5 (3)C25A—C24A—C23A120.0
C13—C14—H14119.7C25A—C24A—H24A120.0
C15—C14—H14119.7C23A—C24A—H24A120.0
C14—C15—C10121.2 (3)C24A—C25A—C20A120.0
C14—C15—H15119.4C24A—C25A—H25A120.0
C10—C15—H15119.4C20A—C25A—H25A120.0
N1—C16—C17113.9 (2)
C17—N2—N3—N40.3 (3)C12—C13—C14—C150.2 (5)
N2—N3—N4—C180.4 (3)C13—C14—C15—C101.6 (5)
N2—N3—N4—C19175.0 (3)C11—C10—C15—C142.6 (5)
C8—N1—C1—C66.7 (4)C9—C10—C15—C14176.4 (3)
C16—N1—C1—C6174.5 (3)C8—N1—C16—C17100.5 (3)
C8—N1—C1—C2173.5 (3)C1—N1—C16—C1778.5 (3)
C16—N1—C1—C25.3 (4)N3—N2—C17—C180.2 (3)
C6—C1—C2—C31.6 (4)N3—N2—C17—C16178.1 (3)
N1—C1—C2—C3178.2 (3)N1—C16—C17—N2126.5 (3)
C1—C2—C3—C40.7 (5)N1—C16—C17—C1855.6 (4)
C2—C3—C4—C50.0 (5)N3—N4—C18—C170.2 (3)
C3—C4—C5—C60.2 (5)C19—N4—C18—C17174.3 (3)
C2—C1—C6—C51.7 (4)N2—C17—C18—N40.0 (3)
N1—C1—C6—C5178.1 (3)C16—C17—C18—N4178.1 (3)
C2—C1—C6—S1179.7 (2)C18—N4—C19—C2079.4 (4)
N1—C1—C6—S10.5 (4)N3—N4—C19—C2094.2 (4)
C4—C5—C6—C11.0 (5)C18—N4—C19—C20A82.2 (4)
C4—C5—C6—S1179.8 (3)N3—N4—C19—C20A91.4 (4)
C7—S1—C6—C11.7 (3)N4—C19—C20—C21150.6 (3)
C7—S1—C6—C5179.6 (2)N4—C19—C20—C2530.9 (5)
C6—S1—C7—C9178.1 (3)C25—C20—C21—C220.0
C6—S1—C7—C81.1 (3)C19—C20—C21—C22178.5 (5)
C1—N1—C8—O1171.2 (3)C20—C21—C22—C230.0
C16—N1—C8—O17.7 (4)C21—C22—C23—C240.0
C1—N1—C8—C79.6 (4)C22—C23—C24—C250.0
C16—N1—C8—C7171.5 (3)C23—C24—C25—C200.0
C9—C7—C8—O16.3 (4)C21—C20—C25—C240.0
S1—C7—C8—O1174.4 (2)C19—C20—C25—C24178.5 (5)
C9—C7—C8—N1172.9 (3)N4—C19—C20A—C21A92.4 (4)
S1—C7—C8—N16.3 (4)N4—C19—C20A—C25A88.2 (4)
C8—C7—C9—C10179.2 (3)C25A—C20A—C21A—C22A0.0
S1—C7—C9—C101.5 (5)C19—C20A—C21A—C22A179.4 (5)
C7—C9—C10—C111.3 (5)C20A—C21A—C22A—C23A0.0
C7—C9—C10—C15177.6 (3)C21A—C22A—C23A—C24A0.0
C15—C10—C11—C121.9 (5)C22A—C23A—C24A—C25A0.0
C9—C10—C11—C12176.9 (3)C23A—C24A—C25A—C20A0.0
C10—C11—C12—C130.3 (5)C21A—C20A—C25A—C24A0.0
C11—C12—C13—C140.9 (5)C19—C20A—C25A—C24A179.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O1i0.992.553.395 (4)144
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged.

References

First citationAloui, S., Forsal, I., Sfaira, M., Touhami, M. E., Taleb, M., Baba, M. F. & Daoudi, M. (2009). Port. Elec. Acta, 27, 599–613.  CrossRef CAS Google Scholar
First citationBakavoli, M., Nikpour, M., Rahimizadeh, M., Saberi, M. R. & Sadeghian, H. (2007). Bioorg. Med. Chem. 15, 2120–2126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeshmukh, M. B. & Mulik, A. R. (2004). E. J. Chem. 1, 206–210.  CrossRef CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFringuelli, R., Milanese, L. & Schiaffella, F. (2005). Mini Rev. Med. Chem. 5, 1061–1073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, L. & Hollingsworth, R. (2005). J. Org. Chem. 70, 9013–9016.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGautam, N., Bishnoi, A. K., Guleria, A., Jangid, D. K., Gupta, S. K. & Gautam, D. C. (2013). Heterocycl. Commun. 19, 37–42.  CAS Google Scholar
First citationGupta, R. & Gupta, A. (2011). Heteroletters, 1, 351–358.  Google Scholar
First citationKumar, M., Sharma, K., Samarth, R. M. & Kumar, A. (2010). Eur. J. Med. Chem. 45, 4467–4472.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParai, M. K. & Panda, G. A. (2009). Tetrahedron Lett. 50, 4703–4705.  Web of Science CrossRef CAS Google Scholar
First citationPodsiadły, R. (2009). J. Photochem. Photobiol. Chem. 202, 115–121.  Google Scholar
First citationSaadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). Org. Commun, 7, 77–84.  Google Scholar
First citationSebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o686.  CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds