organic compounds
2,3-Dibromo-3-phenylpropanoic acid: a monoclinic polymorph
a325 Science Center, Fredonia State University of New York, Fredonia 14063, USA
*Correspondence e-mail: allan.cardenas@fredonia.edu
Bromination of trans-cinnamic acid resulted in the formation of 2,3-dibromo-3-phenylpropanoic acid, C9H8Br2O2. Crystallization from ethanol–water (1:1) gave crystals of different shapes. One is in the form of rods, that crystallized as the orthorhombic polymorph (Pnma), and whose structure has been described [Thong et al. (2008). Acta Cryst. E64, o1946]. The other are thin plate-like crystals which are the monoclinic polymorph (P21/n). The structure of this monoclinic polymorph is similar to that of the orthorhombic polymorph; here the aliphatic C atoms are disordered over three sets of sites (occupancy ratio 0.5:0.25:0.25). In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by weak C—H⋯Br hydrogen bonds, forming chains propagating along the a-axis direction.
Keywords: crystal structure; bromination; hydrogen bonding; inversion dimers.
CCDC reference: 1519137
Structure description
Addition of bromine in glacial acetic acid to trans-cinnamic acid yielded mostly erythro-2,3-dibromo-3-phenylpropanoic acid. Crystallization from ethanol–water (1:1, v:v), gave different-shaped crystals that proved to be two polymorphs of the title compound. The rod-shaped crystalline material was shown to be the orthorhombic polymorph (Pnma), reported on by Thong et al. (2008). The thin plate-like crystals have a monoclinic (P21/n), and herein we report on the crystal structure.
The alipathic carbons, C1 and C2, are split over three positions, and were assigned an occupancy ratio of 0.5:0.25:0.25. The molecular structure of the major component is illustrated in Fig. 1.
In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming a classical carboxylic acid inversion dimer with an (8) ring motif (Table 1 and Fig. 2). Neighboring dimers are linked by weak C—H⋯Br hydrogen bonds, forming chains propagating along the a-axis direction (Table 1 and Fig. 2).
Synthesis and crystallization
Excess bromine in glacial acetic acid was added to trans-cinnamic acid. The crude product was precipitated by addition of water. The crude product was recrystallized from a 1:1 ethanol–water solution at 277 K. Both colorless rod-like and plate-like crystals of the compound were obtained. The reaction scheme is shown in Fig. 3.
Refinement
Crystal data, data collection and structure . The alipathic carbons, C1 and C2, are split over three positions, and were assigned an occupancy ratio of 0.5:0.25:0.25.
details are summarized in Table 2Structural data
CCDC reference: 1519137
https://doi.org/10.1107/S241431461601885X/su4098sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461601885X/su4098Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461601885X/su4098Isup3.cml
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and SHELXL2016 (Sheldrick, 2015).C9H8Br2O2 | F(000) = 592 |
Mr = 307.97 | Dx = 2.087 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5382 (2) Å | Cell parameters from 9931 reflections |
b = 28.8640 (13) Å | θ = 3.4–28.3° |
c = 6.6112 (3) Å | µ = 8.23 mm−1 |
β = 111.935 (1)° | T = 106 K |
V = 980.32 (7) Å3 | Plate, colorless |
Z = 4 | 0.48 × 0.35 × 0.09 mm |
Bruker APEXII CCD diffractometer | 2302 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.040 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 28.3°, θmin = 2.8° |
Tmin = 0.456, Tmax = 0.746 | h = −7→6 |
32878 measured reflections | k = −38→38 |
2452 independent reflections | l = −8→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0498P)2 + 3.0256P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2452 reflections | Δρmax = 1.04 e Å−3 |
126 parameters | Δρmin = −1.02 e Å−3 |
0 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0063 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.72796 (6) | 0.36584 (2) | 0.82102 (5) | 0.02215 (13) | |
Br2 | −0.02058 (6) | 0.43970 (2) | 0.37555 (5) | 0.02384 (13) | |
C3 | 0.2346 (10) | 0.34824 (16) | 0.4013 (8) | 0.0418 (10) | |
C4 | 0.0636 (8) | 0.31343 (15) | 0.4024 (6) | 0.0327 (8) | |
H4 | −0.021097 | 0.314523 | 0.503558 | 0.039* | |
C5 | 0.0162 (7) | 0.27744 (12) | 0.2582 (6) | 0.0220 (6) | |
H5 | −0.105009 | 0.254060 | 0.257170 | 0.026* | |
C6 | 0.1431 (6) | 0.27480 (12) | 0.1139 (5) | 0.0206 (6) | |
H6 | 0.110182 | 0.249474 | 0.015500 | 0.025* | |
C7 | 0.3178 (7) | 0.30891 (13) | 0.1124 (6) | 0.0231 (7) | |
H7 | 0.406474 | 0.306975 | 0.014352 | 0.028* | |
C8 | 0.3625 (8) | 0.34602 (14) | 0.2555 (7) | 0.0352 (9) | |
H8 | 0.480065 | 0.369870 | 0.254135 | 0.042* | |
C9 | 0.4667 (13) | 0.4536 (2) | 0.7928 (9) | 0.0596 (15) | |
O1 | 0.3550 (8) | 0.44829 (11) | 0.9260 (7) | 0.0511 (9) | |
O2 | 0.5956 (10) | 0.48698 (15) | 0.7794 (6) | 0.0652 (12) | |
H2O | 0.622278 | 0.504415 | 0.887335 | 0.098* | |
C1 | 0.4884 (13) | 0.4126 (2) | 0.6445 (10) | 0.0191 (7) | 0.5 |
H1 | 0.546193 | 0.424225 | 0.527342 | 0.023* | 0.5 |
C2 | 0.2257 (13) | 0.3899 (2) | 0.5471 (11) | 0.0191 (7) | 0.5 |
H2 | 0.170807 | 0.378764 | 0.666760 | 0.023* | 0.5 |
C1A | 0.339 (3) | 0.4271 (5) | 0.554 (2) | 0.0191 (7) | 0.25 |
H1A | 0.450625 | 0.432294 | 0.467135 | 0.023* | 0.25 |
C2A | 0.353 (3) | 0.3769 (5) | 0.622 (2) | 0.0191 (7) | 0.25 |
H2A | 0.239337 | 0.372327 | 0.707530 | 0.023* | 0.25 |
C1B | 0.300 (3) | 0.4015 (5) | 0.477 (2) | 0.0191 (7) | 0.25 |
H1B | 0.440311 | 0.414737 | 0.433276 | 0.023* | 0.25 |
C2B | 0.379 (3) | 0.3982 (5) | 0.715 (2) | 0.0191 (7) | 0.25 |
H2B | 0.246721 | 0.384549 | 0.766877 | 0.023* | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02210 (19) | 0.0249 (2) | 0.01555 (18) | 0.00575 (12) | 0.00256 (13) | −0.00114 (11) |
Br2 | 0.02141 (19) | 0.01770 (19) | 0.0258 (2) | 0.00415 (11) | 0.00120 (14) | −0.00336 (12) |
C3 | 0.058 (3) | 0.028 (2) | 0.038 (2) | −0.0083 (19) | 0.016 (2) | −0.0224 (18) |
C4 | 0.035 (2) | 0.040 (2) | 0.0247 (17) | 0.0049 (17) | 0.0140 (15) | −0.0078 (16) |
C5 | 0.0224 (15) | 0.0185 (15) | 0.0237 (15) | −0.0002 (12) | 0.0068 (13) | 0.0004 (12) |
C6 | 0.0191 (14) | 0.0196 (15) | 0.0197 (14) | 0.0012 (12) | 0.0031 (12) | −0.0065 (12) |
C7 | 0.0206 (15) | 0.0261 (17) | 0.0221 (15) | 0.0001 (13) | 0.0073 (13) | −0.0011 (13) |
C8 | 0.035 (2) | 0.0235 (18) | 0.042 (2) | −0.0112 (16) | 0.0081 (17) | −0.0039 (16) |
C9 | 0.084 (4) | 0.056 (3) | 0.045 (3) | −0.008 (3) | 0.031 (3) | −0.031 (3) |
O1 | 0.055 (2) | 0.0260 (15) | 0.069 (2) | −0.0105 (15) | 0.0196 (19) | −0.0064 (16) |
O2 | 0.114 (4) | 0.052 (2) | 0.044 (2) | −0.013 (2) | 0.047 (2) | −0.0139 (17) |
C1 | 0.022 (2) | 0.0174 (19) | 0.020 (2) | −0.0008 (15) | 0.0109 (15) | −0.0023 (14) |
C2 | 0.022 (2) | 0.0174 (19) | 0.020 (2) | −0.0008 (15) | 0.0109 (15) | −0.0023 (14) |
C1A | 0.022 (2) | 0.0174 (19) | 0.020 (2) | −0.0008 (15) | 0.0109 (15) | −0.0023 (14) |
C2A | 0.022 (2) | 0.0174 (19) | 0.020 (2) | −0.0008 (15) | 0.0109 (15) | −0.0023 (14) |
C1B | 0.022 (2) | 0.0174 (19) | 0.020 (2) | −0.0008 (15) | 0.0109 (15) | −0.0023 (14) |
C2B | 0.022 (2) | 0.0174 (19) | 0.020 (2) | −0.0008 (15) | 0.0109 (15) | −0.0023 (14) |
Br1—C1 | 1.946 (7) | C5—C6 | 1.382 (5) |
Br1—C2B | 2.019 (13) | C6—C7 | 1.383 (5) |
Br1—C2A | 2.026 (15) | C7—C8 | 1.389 (5) |
Br2—C1A | 1.931 (14) | C9—O2 | 1.222 (7) |
Br2—C1B | 1.984 (13) | C9—O1 | 1.261 (7) |
Br2—C2 | 2.015 (7) | C9—C1 | 1.569 (8) |
C3—C4 | 1.383 (6) | C9—C1A | 1.658 (14) |
C3—C8 | 1.394 (7) | C9—C2B | 1.695 (14) |
C3—C2 | 1.553 (7) | C1—C2 | 1.504 (9) |
C3—C2A | 1.589 (14) | C1A—C2A | 1.51 (2) |
C3—C1B | 1.616 (14) | C1B—C2B | 1.469 (18) |
C4—C5 | 1.368 (5) | ||
C4—C3—C8 | 119.8 (3) | C2—C1—C9 | 108.0 (5) |
C4—C3—C2 | 112.2 (4) | C2—C1—Br1 | 106.7 (5) |
C8—C3—C2 | 127.4 (4) | C9—C1—Br1 | 110.0 (4) |
C4—C3—C2A | 114.9 (6) | C1—C2—C3 | 110.7 (5) |
C8—C3—C2A | 121.1 (6) | C1—C2—Br2 | 105.8 (4) |
C4—C3—C1B | 139.9 (6) | C3—C2—Br2 | 112.0 (4) |
C8—C3—C1B | 98.3 (6) | C2A—C1A—C9 | 101.7 (10) |
C5—C4—C3 | 120.1 (4) | C2A—C1A—Br2 | 106.9 (9) |
C4—C5—C6 | 120.5 (3) | C9—C1A—Br2 | 118.1 (7) |
C5—C6—C7 | 120.2 (3) | C1A—C2A—C3 | 105.5 (10) |
C6—C7—C8 | 119.4 (3) | C1A—C2A—Br1 | 105.7 (9) |
C7—C8—C3 | 119.9 (4) | C3—C2A—Br1 | 119.1 (8) |
O2—C9—O1 | 126.8 (4) | C2B—C1B—C3 | 102.3 (10) |
O2—C9—C1 | 111.5 (5) | C2B—C1B—Br2 | 105.7 (9) |
O1—C9—C1 | 121.2 (5) | C3—C1B—Br2 | 110.7 (7) |
O2—C9—C1A | 110.4 (6) | C1B—C2B—C9 | 101.5 (9) |
O1—C9—C1A | 117.6 (7) | C1B—C2B—Br1 | 105.4 (9) |
O2—C9—C2B | 146.2 (6) | C9—C2B—Br1 | 101.7 (7) |
O1—C9—C2B | 86.5 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O1i | 0.84 | 1.81 | 2.638 (5) | 167 |
C1—H1···Br2ii | 1.00 | 2.96 | 3.845 (6) | 148 |
C2—H2···Br1iii | 1.00 | 3.01 | 3.884 (7) | 147 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y, z; (iii) x−1, y, z. |
Acknowledgements
The authors would like to thank the Chemistry and Biochemistry Department of the Fredonia State University of New York for funding this study and for the purchase of the diffractometer.
References
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2015). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thong, P. Y., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o1946. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.