organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,3-Di­bromo-3-phenyl­propanoic acid: a monoclinic polymorph

CROSSMARK_Color_square_no_text.svg

a325 Science Center, Fredonia State University of New York, Fredonia 14063, USA
*Correspondence e-mail: allan.cardenas@fredonia.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 November 2016; accepted 24 November 2016; online 29 November 2016)

Bromination of trans-cinnamic acid resulted in the formation of 2,3-di­bromo-3-phenyl­propanoic acid, C9H8Br2O2. Crystallization from ethanol–water (1:1) gave crystals of different shapes. One is in the form of rods, that crystallized as the ortho­rhom­bic polymorph (Pnma), and whose structure has been described [Thong et al. (2008[Thong, P. Y., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o1946.]). Acta Cryst. E64, o1946]. The other are thin plate-like crystals which are the monoclinic polymorph (P21/n). The structure of this monoclinic polymorph is similar to that of the ortho­rhom­bic polymorph; here the aliphatic C atoms are disordered over three sets of sites (occupancy ratio 0.5:0.25:0.25). In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by weak C—H⋯Br hydrogen bonds, forming chains propagating along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Addition of bromine in glacial acetic acid to trans-cinnamic acid yielded mostly erythro-2,3-di­bromo-3-phenyl­propanoic acid. Crystallization from ethanol–water (1:1, v:v), gave different-shaped crystals that proved to be two polymorphs of the title compound. The rod-shaped crystalline material was shown to be the ortho­rhom­bic polymorph (Pnma), reported on by Thong et al. (2008[Thong, P. Y., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o1946.]). The thin plate-like crystals have a monoclinic unit cell (P21/n), and herein we report on the crystal structure.

The alipathic carbons, C1 and C2, are split over three positions, and were assigned an occupancy ratio of 0.5:0.25:0.25. The mol­ecular structure of the major component is illustrated in Fig. 1[link].

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title monoclinic polymorph, with the atom labelling and 50% probability displacement ellipsoids. Only the major component of the disordered aliphatic C atoms (C1 and C2) is shown.

In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming a classical carb­oxy­lic acid inversion dimer with an [R_{2}^{2}](8) ring motif (Table 1[link] and Fig. 2[link]). Neighboring dimers are linked by weak C—H⋯Br hydrogen bonds, forming chains propagating along the a-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.84 1.81 2.638 (5) 167
C1—H1⋯Br2ii 1.00 2.96 3.845 (6) 148
C2—H2⋯Br1iii 1.00 3.01 3.884 (7) 147
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z; (iii) x-1, y, z.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title monoclinic polymorph. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and only the major component of the disordered aliphatic C atoms (C1 and C2) is shown.

Synthesis and crystallization

Excess bromine in glacial acetic acid was added to trans-cinnamic acid. The crude product was precipitated by addition of water. The crude product was recrystallized from a 1:1 ethanol–water solution at 277 K. Both colorless rod-like and plate-like crystals of the compound were obtained. The reaction scheme is shown in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The alipathic carbons, C1 and C2, are split over three positions, and were assigned an occupancy ratio of 0.5:0.25:0.25.

Table 2
Experimental details

Crystal data
Chemical formula C9H8Br2O2
Mr 307.97
Crystal system, space group Monoclinic, P21/n
Temperature (K) 106
a, b, c (Å) 5.5382 (2), 28.8640 (13), 6.6112 (3)
β (°) 111.935 (1)
V3) 980.32 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.23
Crystal size (mm) 0.48 × 0.35 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.456, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32878, 2452, 2302
Rint 0.040
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.07
No. of reflections 2452
No. of parameters 126
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.04, −1.02
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and SHELXL2016 (Sheldrick, 2015).

2,3-Dibromo-3-phenylpropanoic acid top
Crystal data top
C9H8Br2O2F(000) = 592
Mr = 307.97Dx = 2.087 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.5382 (2) ÅCell parameters from 9931 reflections
b = 28.8640 (13) Åθ = 3.4–28.3°
c = 6.6112 (3) ŵ = 8.23 mm1
β = 111.935 (1)°T = 106 K
V = 980.32 (7) Å3Plate, colorless
Z = 40.48 × 0.35 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2302 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 28.3°, θmin = 2.8°
Tmin = 0.456, Tmax = 0.746h = 76
32878 measured reflectionsk = 3838
2452 independent reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0498P)2 + 3.0256P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2452 reflectionsΔρmax = 1.04 e Å3
126 parametersΔρmin = 1.02 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.72796 (6)0.36584 (2)0.82102 (5)0.02215 (13)
Br20.02058 (6)0.43970 (2)0.37555 (5)0.02384 (13)
C30.2346 (10)0.34824 (16)0.4013 (8)0.0418 (10)
C40.0636 (8)0.31343 (15)0.4024 (6)0.0327 (8)
H40.0210970.3145230.5035580.039*
C50.0162 (7)0.27744 (12)0.2582 (6)0.0220 (6)
H50.1050090.2540600.2571700.026*
C60.1431 (6)0.27480 (12)0.1139 (5)0.0206 (6)
H60.1101820.2494740.0155000.025*
C70.3178 (7)0.30891 (13)0.1124 (6)0.0231 (7)
H70.4064740.3069750.0143520.028*
C80.3625 (8)0.34602 (14)0.2555 (7)0.0352 (9)
H80.4800650.3698700.2541350.042*
C90.4667 (13)0.4536 (2)0.7928 (9)0.0596 (15)
O10.3550 (8)0.44829 (11)0.9260 (7)0.0511 (9)
O20.5956 (10)0.48698 (15)0.7794 (6)0.0652 (12)
H2O0.6222780.5044150.8873350.098*
C10.4884 (13)0.4126 (2)0.6445 (10)0.0191 (7)0.5
H10.5461930.4242250.5273420.023*0.5
C20.2257 (13)0.3899 (2)0.5471 (11)0.0191 (7)0.5
H20.1708070.3787640.6667600.023*0.5
C1A0.339 (3)0.4271 (5)0.554 (2)0.0191 (7)0.25
H1A0.4506250.4322940.4671350.023*0.25
C2A0.353 (3)0.3769 (5)0.622 (2)0.0191 (7)0.25
H2A0.2393370.3723270.7075300.023*0.25
C1B0.300 (3)0.4015 (5)0.477 (2)0.0191 (7)0.25
H1B0.4403110.4147370.4332760.023*0.25
C2B0.379 (3)0.3982 (5)0.715 (2)0.0191 (7)0.25
H2B0.2467210.3845490.7668770.023*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02210 (19)0.0249 (2)0.01555 (18)0.00575 (12)0.00256 (13)0.00114 (11)
Br20.02141 (19)0.01770 (19)0.0258 (2)0.00415 (11)0.00120 (14)0.00336 (12)
C30.058 (3)0.028 (2)0.038 (2)0.0083 (19)0.016 (2)0.0224 (18)
C40.035 (2)0.040 (2)0.0247 (17)0.0049 (17)0.0140 (15)0.0078 (16)
C50.0224 (15)0.0185 (15)0.0237 (15)0.0002 (12)0.0068 (13)0.0004 (12)
C60.0191 (14)0.0196 (15)0.0197 (14)0.0012 (12)0.0031 (12)0.0065 (12)
C70.0206 (15)0.0261 (17)0.0221 (15)0.0001 (13)0.0073 (13)0.0011 (13)
C80.035 (2)0.0235 (18)0.042 (2)0.0112 (16)0.0081 (17)0.0039 (16)
C90.084 (4)0.056 (3)0.045 (3)0.008 (3)0.031 (3)0.031 (3)
O10.055 (2)0.0260 (15)0.069 (2)0.0105 (15)0.0196 (19)0.0064 (16)
O20.114 (4)0.052 (2)0.044 (2)0.013 (2)0.047 (2)0.0139 (17)
C10.022 (2)0.0174 (19)0.020 (2)0.0008 (15)0.0109 (15)0.0023 (14)
C20.022 (2)0.0174 (19)0.020 (2)0.0008 (15)0.0109 (15)0.0023 (14)
C1A0.022 (2)0.0174 (19)0.020 (2)0.0008 (15)0.0109 (15)0.0023 (14)
C2A0.022 (2)0.0174 (19)0.020 (2)0.0008 (15)0.0109 (15)0.0023 (14)
C1B0.022 (2)0.0174 (19)0.020 (2)0.0008 (15)0.0109 (15)0.0023 (14)
C2B0.022 (2)0.0174 (19)0.020 (2)0.0008 (15)0.0109 (15)0.0023 (14)
Geometric parameters (Å, º) top
Br1—C11.946 (7)C5—C61.382 (5)
Br1—C2B2.019 (13)C6—C71.383 (5)
Br1—C2A2.026 (15)C7—C81.389 (5)
Br2—C1A1.931 (14)C9—O21.222 (7)
Br2—C1B1.984 (13)C9—O11.261 (7)
Br2—C22.015 (7)C9—C11.569 (8)
C3—C41.383 (6)C9—C1A1.658 (14)
C3—C81.394 (7)C9—C2B1.695 (14)
C3—C21.553 (7)C1—C21.504 (9)
C3—C2A1.589 (14)C1A—C2A1.51 (2)
C3—C1B1.616 (14)C1B—C2B1.469 (18)
C4—C51.368 (5)
C4—C3—C8119.8 (3)C2—C1—C9108.0 (5)
C4—C3—C2112.2 (4)C2—C1—Br1106.7 (5)
C8—C3—C2127.4 (4)C9—C1—Br1110.0 (4)
C4—C3—C2A114.9 (6)C1—C2—C3110.7 (5)
C8—C3—C2A121.1 (6)C1—C2—Br2105.8 (4)
C4—C3—C1B139.9 (6)C3—C2—Br2112.0 (4)
C8—C3—C1B98.3 (6)C2A—C1A—C9101.7 (10)
C5—C4—C3120.1 (4)C2A—C1A—Br2106.9 (9)
C4—C5—C6120.5 (3)C9—C1A—Br2118.1 (7)
C5—C6—C7120.2 (3)C1A—C2A—C3105.5 (10)
C6—C7—C8119.4 (3)C1A—C2A—Br1105.7 (9)
C7—C8—C3119.9 (4)C3—C2A—Br1119.1 (8)
O2—C9—O1126.8 (4)C2B—C1B—C3102.3 (10)
O2—C9—C1111.5 (5)C2B—C1B—Br2105.7 (9)
O1—C9—C1121.2 (5)C3—C1B—Br2110.7 (7)
O2—C9—C1A110.4 (6)C1B—C2B—C9101.5 (9)
O1—C9—C1A117.6 (7)C1B—C2B—Br1105.4 (9)
O2—C9—C2B146.2 (6)C9—C2B—Br1101.7 (7)
O1—C9—C2B86.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.841.812.638 (5)167
C1—H1···Br2ii1.002.963.845 (6)148
C2—H2···Br1iii1.003.013.884 (7)147
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

The authors would like to thank the Chemistry and Biochemistry Department of the Fredonia State University of New York for funding this study and for the purchase of the diffractometer.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2015). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThong, P. Y., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o1946.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds