organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Hy­dr­oxy-4-phenyl-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-one: cis isomer

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, bUFR-Environnement, UNIV Jean Lorougnon Guédé, BP 150, Daloa, Ivory Coast, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: rida.m.b@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 November 2016; accepted 23 November 2016; online 29 November 2016)

In the title compound, C15H14N2O2, the seven-membered benzodiazepine ring adopts a twist-boat conformation and the two aromatic rings are inclined to one another by 81.06 (15)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along the [10-1] direction. The chains are linked by C—H⋯O hydrogen bonds, forming sheets parallel to the ac plane. Within the sheets, there are N—H⋯π inter­actions present, and C—H⋯π inter­actions link the sheets to form a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,5-Benzodiazepine derivatives have been used as therapeutics for viral infections and cardiovascular disorder (Jacob et al., 2011[Jacob, R. G., Radatz, C. S., Rodrigues, M. B., Alves, D., Perin, G., Lenardão, E. J. L. & Savegnago, L. (2011). Heteroat. Chem. 22, 180-185.]; Maleki et al., 2014[Maleki, A., Ghamari, N. M. & Kamalzare, M. (2014). RSC Adv. 4, 9416-9423.]). They are active against potassium blockers (Claremon et al., 1996[Claremon, D. A., Liverton, N., Selnick, H. G. & Smith, G. R. (1996). PCT Int. Appl. WO 9640653.1074.]) and are also employed as inter­mediates for the synthesis of several heterocyclic compounds (Minnih et al., 2014[Minnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1-24.]; Ahabchane et al., 1999[Ahabchane, A. H., Keita, A. & Essassi, E. M. (1999). Compt. Rend. Ser. IIC, 2, 519-523.]). As part of our studies in this area, we now describe the synthesis and crystal structure of the title compound, Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and 50% probability ellipsoids.

The seven-membered ring (N1/N2/C1/C6–C9) adopts a twist-boat conformation [puckering parameters: Q(2) = 0.571 (3) Å, Q(3) = 0.375 (3) Å, φ(2) = 230.7 (3)° and φ(3) = 326.7 (5)°; total puckering amplitude Q = 0.682 (3) Å]. The dihedral angle between the aromatic rings, C1–C6 and C10–C15, is 81.06 (15)°. There is possibly an intra­molecular O1—H1⋯O2 hydrogen bond (Table 1[link]), but the small O—H⋯O angle of 122 (4)° would indicate considerable strain.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (4) 2.01 (4) 2.556 (3) 122 (4)
N2—H2A⋯O1i 0.88 (4) 2.09 (4) 2.922 (3) 157 (3)
C8—H8⋯O2ii 0.99 (4) 2.57 (4) 3.395 (4) 141 (3)
C12—H12⋯Cg1iii 0.99 (4) 2.85 (3) 3.696 (4) 144 (3)
N1—H1ACg2ii 0.99 (5) 2.63 (3) 3.457 (3) 149 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.

In the crystal, mol­ecules are linked by N2—H2A⋯O1i hydrogen bonds, forming chains propagating along [10[\overline{1}]]; see Table 1[link] and Fig. 2[link]. The chains are linked by C8—H8⋯O2ii hydrogen bonds, forming sheets parallel to the ac plane (Table 1[link] and Fig. 2[link]). Within the sheets there are N—H⋯π inter­actions present, and C—H⋯π inter­actions link the sheets to form a three-dimensional structure (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a-axis direction. Hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 3]
Figure 3
Details of the inter­molecular N—H⋯O (blue dotted lines) and C—H⋯O (black dotted line) hydrogen bonds, as well as the N—H⋯π(ring) (purple dotted line) and C—H⋯π(ring) (orange dotted lines) inter­actions. [Symmetry codes: (i) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; (ii) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (iii) 1 − x, 1 − y, 1 − z); (iv) 1 + x, y, z.]

Synthesis and crystallization

A mixture of o-phenyl­enedi­amine 1 (0.03 mol) and ethyl glycidate (0.03 mol) was refluxed in 80 ml of xylene for 48 h. The resulting crude mixture was left at room temperature overnight. The trans diastereoisomer which precipitated was filtered. The filtrate was concentrated under reduced pressure and the oil obtained was chromatographed on a silica gel column with a mixture of ether/chloro­form (50/50) as eluent, and gave the trans and cis isomers, with a predominance of the trans isomers. The cis isomer was recrystallized from ethanol solution to afford the title compound as colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H14N2O2
Mr 254.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.519 (2), 21.594 (8), 9.917 (4)
β (°) 90.405 (5)
V3) 1181.9 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.41 × 0.17 × 0.09
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.69, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 10886, 2955, 2064
Rint 0.073
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.211, 1.10
No. of reflections 2955
No. of parameters 228
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.51, −0.37
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Hydroxy-4-phenyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one top
Crystal data top
C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.519 (2) ÅCell parameters from 2522 reflections
b = 21.594 (8) Åθ = 2.3–27.3°
c = 9.917 (4) ŵ = 0.10 mm1
β = 90.405 (5)°T = 100 K
V = 1181.9 (7) Å3Plate, colourless
Z = 40.41 × 0.17 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2955 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 8.3333 pixels mm-1θmax = 28.5°, θmin = 1.9°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2828
Tmin = 0.69, Tmax = 0.99l = 1313
10886 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: difference Fourier map
wR(F2) = 0.211All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0375P)2 + 2.6752P]
where P = (Fo2 + 2Fc2)/3
2955 reflections(Δ/σ)max = 0.002
228 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7374 (4)0.22601 (11)0.6710 (2)0.0243 (5)
H10.597 (8)0.2125 (19)0.656 (4)0.037 (11)*
O20.3865 (4)0.24635 (11)0.5074 (2)0.0259 (5)
N11.0082 (5)0.36774 (14)0.5379 (3)0.0231 (6)
H1A1.152 (8)0.385 (2)0.567 (4)0.043 (12)*
N20.5741 (5)0.31730 (13)0.3793 (3)0.0224 (6)
H2A0.447 (6)0.3124 (15)0.326 (3)0.016 (8)*
C10.7618 (5)0.35486 (15)0.3285 (3)0.0207 (6)
C20.7369 (6)0.37111 (16)0.1921 (3)0.0231 (7)
H20.605 (7)0.3557 (16)0.148 (4)0.023 (9)*
C30.8982 (6)0.40866 (16)0.1277 (3)0.0257 (7)
H30.872 (7)0.4181 (18)0.037 (4)0.035 (10)*
C41.0966 (6)0.43153 (17)0.1999 (3)0.0263 (7)
H41.206 (7)0.4591 (17)0.161 (4)0.027 (9)*
C51.1238 (5)0.41670 (16)0.3341 (3)0.0238 (7)
H51.271 (7)0.4331 (16)0.387 (4)0.025 (9)*
C60.9597 (5)0.37839 (15)0.4029 (3)0.0205 (6)
C70.8692 (5)0.33250 (15)0.6340 (3)0.0208 (7)
H70.985 (6)0.3219 (15)0.709 (3)0.015 (8)*
C80.7900 (5)0.27039 (15)0.5704 (3)0.0213 (7)
H80.923 (7)0.2558 (16)0.512 (4)0.025 (9)*
C90.5674 (5)0.27720 (15)0.4819 (3)0.0193 (6)
C100.6631 (5)0.36864 (15)0.6969 (3)0.0209 (7)
C110.5912 (6)0.42582 (16)0.6492 (3)0.0241 (7)
H110.668 (6)0.4453 (15)0.572 (3)0.019 (8)*
C120.4053 (6)0.45873 (17)0.7111 (3)0.0257 (7)
H120.354 (6)0.4998 (16)0.676 (4)0.021 (9)*
C130.2881 (6)0.43370 (17)0.8217 (3)0.0257 (7)
H130.159 (7)0.4587 (17)0.864 (4)0.031 (10)*
C140.3598 (6)0.37627 (17)0.8703 (3)0.0270 (7)
H140.286 (8)0.3569 (19)0.943 (4)0.041 (11)*
C150.5472 (6)0.34412 (17)0.8103 (3)0.0253 (7)
H150.589 (7)0.3010 (19)0.842 (4)0.032 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (11)0.0391 (14)0.0168 (11)0.0029 (10)0.0052 (9)0.0048 (9)
O20.0156 (10)0.0420 (14)0.0200 (11)0.0051 (9)0.0028 (8)0.0034 (10)
N10.0114 (11)0.0413 (17)0.0167 (13)0.0052 (11)0.0007 (9)0.0008 (11)
N20.0141 (12)0.0399 (17)0.0133 (12)0.0030 (11)0.0017 (9)0.0015 (11)
C10.0126 (13)0.0320 (17)0.0176 (14)0.0016 (12)0.0017 (11)0.0017 (12)
C20.0187 (15)0.0354 (18)0.0152 (14)0.0005 (13)0.0026 (11)0.0017 (12)
C30.0230 (16)0.0355 (19)0.0185 (16)0.0031 (13)0.0024 (12)0.0001 (13)
C40.0196 (15)0.0359 (19)0.0235 (17)0.0016 (14)0.0066 (12)0.0009 (14)
C50.0126 (13)0.0367 (19)0.0221 (16)0.0002 (12)0.0021 (11)0.0022 (13)
C60.0133 (13)0.0322 (17)0.0159 (14)0.0024 (12)0.0022 (10)0.0023 (12)
C70.0126 (13)0.0355 (18)0.0143 (14)0.0015 (12)0.0006 (11)0.0006 (12)
C80.0147 (14)0.0342 (18)0.0150 (14)0.0014 (12)0.0011 (11)0.0018 (12)
C90.0120 (13)0.0321 (17)0.0136 (14)0.0000 (11)0.0010 (10)0.0010 (11)
C100.0149 (14)0.0347 (18)0.0130 (13)0.0015 (12)0.0014 (10)0.0025 (12)
C110.0227 (15)0.0329 (18)0.0169 (15)0.0036 (13)0.0018 (12)0.0001 (13)
C120.0229 (16)0.0340 (19)0.0203 (16)0.0002 (13)0.0022 (12)0.0002 (13)
C130.0176 (15)0.039 (2)0.0207 (16)0.0010 (13)0.0008 (12)0.0034 (14)
C140.0243 (16)0.038 (2)0.0191 (16)0.0009 (14)0.0032 (12)0.0017 (14)
C150.0205 (15)0.038 (2)0.0177 (15)0.0005 (14)0.0002 (12)0.0022 (13)
Geometric parameters (Å, º) top
O1—C81.415 (4)C5—H51.03 (4)
O1—H10.84 (4)C7—C101.517 (4)
O2—C91.228 (4)C7—C81.544 (5)
N1—C61.383 (4)C7—H71.00 (3)
N1—C71.444 (4)C8—C91.512 (4)
N1—H1A0.93 (5)C8—H80.99 (4)
N2—C91.337 (4)C10—C111.380 (5)
N2—C11.412 (4)C10—C151.402 (4)
N2—H2A0.88 (4)C11—C121.394 (5)
C1—C21.403 (4)C11—H110.98 (3)
C1—C61.409 (4)C12—C131.387 (5)
C2—C31.366 (5)C12—H120.99 (4)
C2—H20.91 (4)C13—C141.387 (5)
C3—C41.394 (5)C13—H130.99 (4)
C3—H30.94 (4)C14—C151.384 (5)
C4—C51.376 (5)C14—H140.93 (4)
C4—H40.93 (4)C15—H151.01 (4)
C5—C61.407 (4)
C8—O1—H1108 (3)C10—C7—H7106.8 (19)
C6—N1—C7128.8 (3)C8—C7—H7106.3 (18)
C6—N1—H1A113 (3)O1—C8—C9107.8 (2)
C7—N1—H1A118 (3)O1—C8—C7111.1 (2)
C9—N2—C1131.9 (3)C9—C8—C7112.3 (3)
C9—N2—H2A111 (2)O1—C8—H8111 (2)
C1—N2—H2A116 (2)C9—C8—H8107 (2)
C2—C1—C6119.0 (3)C7—C8—H8108 (2)
C2—C1—N2114.9 (3)O2—C9—N2122.3 (3)
C6—C1—N2126.1 (3)O2—C9—C8119.1 (3)
C3—C2—C1122.6 (3)N2—C9—C8118.6 (3)
C3—C2—H2121 (2)C11—C10—C15118.8 (3)
C1—C2—H2117 (2)C11—C10—C7122.3 (3)
C2—C3—C4118.8 (3)C15—C10—C7118.9 (3)
C2—C3—H3119 (2)C10—C11—C12121.1 (3)
C4—C3—H3122 (3)C10—C11—H11122 (2)
C5—C4—C3119.6 (3)C12—C11—H11117 (2)
C5—C4—H4119 (2)C13—C12—C11119.9 (3)
C3—C4—H4122 (2)C13—C12—H12119 (2)
C4—C5—C6122.7 (3)C11—C12—H12121 (2)
C4—C5—H5120 (2)C12—C13—C14119.3 (3)
C6—C5—H5118 (2)C12—C13—H13118 (2)
N1—C6—C5116.5 (3)C14—C13—H13123 (2)
N1—C6—C1126.3 (3)C15—C14—C13120.7 (3)
C5—C6—C1117.2 (3)C15—C14—H14116 (3)
N1—C7—C10113.8 (3)C13—C14—H14123 (3)
N1—C7—C8109.8 (2)C14—C15—C10120.2 (3)
C10—C7—C8113.8 (2)C14—C15—H15120 (2)
N1—C7—H7105.7 (19)C10—C15—H15120 (2)
C9—N2—C1—C2155.0 (3)C10—C7—C8—C947.4 (3)
C9—N2—C1—C627.6 (5)C1—N2—C9—O2176.8 (3)
C6—C1—C2—C30.5 (5)C1—N2—C9—C84.0 (5)
N2—C1—C2—C3178.1 (3)O1—C8—C9—O20.4 (4)
C1—C2—C3—C40.4 (5)C7—C8—C9—O2122.2 (3)
C2—C3—C4—C50.9 (5)O1—C8—C9—N2179.6 (3)
C3—C4—C5—C60.7 (5)C7—C8—C9—N257.0 (4)
C7—N1—C6—C5177.8 (3)N1—C7—C10—C1110.6 (4)
C7—N1—C6—C11.9 (5)C8—C7—C10—C11116.2 (3)
C4—C5—C6—N1179.5 (3)N1—C7—C10—C15167.2 (3)
C4—C5—C6—C10.2 (5)C8—C7—C10—C1566.0 (4)
C2—C1—C6—N1178.9 (3)C15—C10—C11—C120.6 (5)
N2—C1—C6—N11.6 (5)C7—C10—C11—C12178.3 (3)
C2—C1—C6—C50.7 (4)C10—C11—C12—C130.7 (5)
N2—C1—C6—C5178.1 (3)C11—C12—C13—C140.7 (5)
C6—N1—C7—C1083.5 (4)C12—C13—C14—C150.4 (5)
C6—N1—C7—C845.3 (4)C13—C14—C15—C101.7 (5)
N1—C7—C8—O1157.8 (2)C11—C10—C15—C141.7 (5)
C10—C7—C8—O173.4 (3)C7—C10—C15—C14179.5 (3)
N1—C7—C8—C981.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (4)2.01 (4)2.556 (3)122 (4)
N2—H2A···O1i0.88 (4)2.09 (4)2.922 (3)157 (3)
C8—H8···O2ii0.99 (4)2.57 (4)3.395 (4)141 (3)
C12—H12···Cg1iii0.99 (4)2.85 (3)3.696 (4)144 (3)
N1—H1A···Cg2ii0.99 (5)2.63 (3)3.457 (3)149 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAhabchane, A. H., Keita, A. & Essassi, E. M. (1999). Compt. Rend. Ser. IIC, 2, 519–523.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClaremon, D. A., Liverton, N., Selnick, H. G. & Smith, G. R. (1996). PCT Int. Appl. WO 9640653.1074.  Google Scholar
First citationJacob, R. G., Radatz, C. S., Rodrigues, M. B., Alves, D., Perin, G., Lenardão, E. J. L. & Savegnago, L. (2011). Heteroat. Chem. 22, 180–185.  Web of Science CrossRef CAS Google Scholar
First citationMaleki, A., Ghamari, N. M. & Kamalzare, M. (2014). RSC Adv. 4, 9416–9423.  Web of Science CrossRef CAS Google Scholar
First citationMinnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1–24.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds