metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Diiso­propyl­ammonium (3,6-di­chloro­benzene-1,2-di­thiol­ato)cuprato(III) tetra­hydro­furan monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain, and bLaboratorio de Difracción de Rayos X de Monocristal, SIdI, Universidad Autónoma de Madrid, 28049 Madrid, Spain
*Correspondence e-mail: josefina.perles@uam.es

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 November 2016; accepted 24 November 2016; online 29 November 2016)

The asymmetric unit of the title compound, (C6H16N)[Cu(C6H2Cl2S2)2]·C4H8O, comprises a [Cu(SC6H2Cl2S)2] anion, an [iPr2NH2]+ cation and a solvent tetrahydrofuran molecule. The CuIII atom has an almost square-planar CuS4 coordination environment. In the crystal, the anion and the solvent mol­ecule are linked via N—H⋯O and N—H⋯S hydrogen bonds involving the diiso­propyl­ammonium cation. There are no other significant inter­molecular inter­actions present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title compound, Fig. 1[link], the anion presents a planar geometry with the copper(III) atom located at its center in a almost square planar CuS4 coordination environment. The S—Cu—S bond angles [S4—Cu1—S2 = 87.85 (3), S4—Cu1—S3 = 92.26 (3), S2—Cu1—S1 = 92.14 (4)° and S3—Cu1—S1 = 88.45 (3) °] slightly deviate from 90°, and the Cu—S bond lengths vary from 2.1722 (9) to 2.1776 (9) Å. These geometrical parameters agree well with those observed in a similar compound containing the same anion but with the methyl­tri­phenyl­phospho­nium cation (Herich et al., 2015[Herich, P., Fronc, M. & Kožíšek, J. (2015). Acta Cryst. C71, 159-164.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal, the anion and the solvent mol­ecule are linked via N—H⋯O and N—H⋯S hydrogen bonds involving the cation (Fig. 2[link] and Table 1[link]). There are no other significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1 0.89 2.59 3.417 (3) 156
N1—H1B⋯O1i 0.89 1.93 2.805 (4) 170
Symmetry code: (i) x, y+1, z.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound, with the N—H⋯O and N—H⋯S hydrogen bonds shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

To a solution of 1,2-HSC6H2Cl2SH (74 mg, 0.35 mmol) in CH3CN (3 ml) was added iPr2NH (99 µl, 0.70 mmol). After stirring for 5 min, Cu(ClO4)2·6H2O (64 mg, 0.18 mmol) was added, and the reaction mixture was left for 2 h in an open atmosphere. Then the solvent was removed in vacuum, yielding a green solid. Recrystallization of this solid in THF/n-heptane (1:1) at room temperature produced green plate-like crystals of the title compound (yield 110 mg, 93%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C6H16N)[Cu(C6H2Cl2S2)2]·C4H8O
Mr 656.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 17.6487 (8), 8.8259 (3), 18.9730 (8)
β (°) 93.616 (2)
V3) 2949.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.08 × 0.06 × 0.01
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.90, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 35036, 5305, 3766
Rint 0.046
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.01
No. of reflections 5305
No. of parameters 302
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Diisopropylammonium (3,6-dichlorobenzene-1,2-dithiolato)cuprato(III) tetrahydrofuran monosolvate top
Crystal data top
(C6H16N)[Cu(C6H2Cl2S2)2]·C4H8OF(000) = 1344
Mr = 656.03Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.6487 (8) ÅCell parameters from 7896 reflections
b = 8.8259 (3) Åθ = 2.6–22.7°
c = 18.9730 (8) ŵ = 1.40 mm1
β = 93.616 (2)°T = 296 K
V = 2949.5 (2) Å3Plate, green
Z = 40.08 × 0.06 × 0.01 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5305 independent reflections
Radiation source: fine-focus sealed tube3766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 25.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1821
Tmin = 0.90, Tmax = 0.99k = 1010
35036 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0456P)2 + 1.2611P]
where P = (Fo2 + 2Fc2)/3
5305 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89102 (17)0.7458 (3)0.7206 (2)0.0564 (9)
C20.9492 (2)0.8280 (4)0.6920 (2)0.0753 (11)
C31.0060 (2)0.8945 (5)0.7352 (3)0.0984 (16)
H31.04480.94820.71550.118*
C41.0048 (3)0.8807 (5)0.8072 (3)0.0986 (15)
H41.04310.92470.83630.118*
C50.9480 (2)0.8031 (4)0.8363 (2)0.0750 (11)
C60.88941 (18)0.7351 (4)0.7939 (2)0.0589 (9)
C70.59589 (16)0.3943 (3)0.68861 (15)0.0420 (7)
C80.53460 (19)0.3371 (3)0.64767 (16)0.0502 (8)
C90.4777 (2)0.2576 (4)0.67669 (19)0.0642 (9)
H90.43720.22010.64810.077*
C100.4808 (2)0.2336 (4)0.74827 (19)0.0621 (9)
H100.44220.18040.76850.074*
C110.54128 (18)0.2887 (3)0.78993 (16)0.0510 (8)
C120.59981 (17)0.3693 (3)0.76139 (15)0.0423 (7)
C130.8609 (2)0.1804 (6)0.4692 (3)0.1000 (15)
H13A0.86670.08540.44450.12*
H13B0.90310.1920.50410.12*
C140.8583 (4)0.3070 (7)0.4197 (4)0.157 (3)
H14A0.85260.27010.37150.188*
H14B0.90480.36560.42520.188*
C150.7938 (4)0.4001 (7)0.4353 (4)0.155 (3)
H15A0.81080.49760.45390.186*
H15B0.76130.41690.39290.186*
C160.7545 (3)0.3222 (7)0.4853 (3)0.132 (2)
H16A0.70290.30290.46690.158*
H16B0.75240.38320.52770.158*
C180.7984 (3)1.1396 (5)0.6879 (3)0.1110 (17)
H18A0.78971.21710.72190.167*
H18B0.82441.18220.64960.167*
H18C0.82891.06060.70990.167*
C170.7231 (3)1.0744 (4)0.6598 (2)0.0843 (13)
H170.69091.15860.64230.101*
C200.6724 (2)0.8859 (4)0.5608 (2)0.0758 (11)
H200.65180.81590.59490.091*
C210.7039 (3)0.7943 (6)0.5022 (2)0.1007 (14)
H21A0.66560.72570.48310.151*
H21B0.74720.73770.52050.151*
H21C0.71870.86120.46560.151*
C220.6102 (3)0.9937 (6)0.5353 (3)0.124 (2)
H22A0.63081.0690.50530.186*
H22B0.58951.04220.5750.186*
H22C0.57090.93850.50910.186*
C190.6817 (4)0.9914 (5)0.7149 (3)0.126 (2)
H19A0.7110.90520.73110.188*
H19B0.63320.95820.69480.188*
H19C0.67441.05790.75390.188*
Cl10.94808 (7)0.85050 (15)0.60108 (7)0.1084 (4)
Cl20.94720 (7)0.78663 (15)0.92707 (7)0.1069 (4)
Cl30.52868 (6)0.36943 (11)0.55714 (4)0.0730 (3)
Cl40.54440 (6)0.25575 (13)0.88029 (5)0.0835 (3)
Cu10.74529 (2)0.55730 (4)0.74061 (2)0.04436 (13)
O10.79163 (18)0.1828 (4)0.50199 (17)0.0995 (9)
N10.73755 (17)0.9730 (3)0.59786 (16)0.0690 (8)
H1A0.77250.90570.61270.083*
H1B0.75811.03010.56550.083*
S10.82175 (5)0.65214 (10)0.66643 (5)0.0550 (2)
S20.81555 (5)0.63846 (11)0.83102 (5)0.0665 (3)
S30.66744 (5)0.49927 (9)0.65116 (4)0.0492 (2)
S40.67634 (5)0.44055 (10)0.81442 (4)0.0532 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0364 (18)0.0413 (17)0.092 (3)0.0076 (15)0.0108 (18)0.0084 (17)
C20.048 (2)0.061 (2)0.119 (3)0.0013 (19)0.021 (2)0.018 (2)
C30.050 (3)0.066 (3)0.180 (5)0.019 (2)0.017 (3)0.010 (3)
C40.062 (3)0.073 (3)0.157 (5)0.019 (2)0.016 (3)0.000 (3)
C50.055 (2)0.058 (2)0.110 (3)0.0029 (19)0.015 (2)0.002 (2)
C60.0426 (19)0.0451 (18)0.088 (3)0.0062 (15)0.0024 (18)0.0076 (18)
C70.0436 (18)0.0339 (15)0.0491 (17)0.0028 (13)0.0078 (14)0.0006 (13)
C80.059 (2)0.0433 (17)0.0477 (18)0.0022 (16)0.0002 (16)0.0007 (14)
C90.061 (2)0.061 (2)0.069 (2)0.0160 (19)0.0061 (19)0.0033 (18)
C100.060 (2)0.057 (2)0.070 (2)0.0204 (18)0.0080 (19)0.0032 (17)
C110.056 (2)0.0490 (18)0.0484 (18)0.0068 (16)0.0085 (16)0.0020 (14)
C120.0450 (18)0.0367 (15)0.0457 (17)0.0003 (14)0.0070 (14)0.0033 (13)
C130.063 (3)0.105 (4)0.134 (4)0.004 (3)0.020 (3)0.003 (3)
C140.149 (6)0.119 (5)0.214 (7)0.022 (4)0.099 (5)0.051 (5)
C150.146 (6)0.099 (4)0.231 (8)0.024 (4)0.094 (6)0.049 (5)
C160.142 (5)0.113 (4)0.148 (5)0.040 (4)0.073 (4)0.031 (4)
C180.135 (5)0.084 (3)0.112 (4)0.030 (3)0.009 (3)0.019 (3)
C170.100 (3)0.053 (2)0.101 (3)0.028 (2)0.018 (3)0.004 (2)
C200.069 (3)0.064 (2)0.094 (3)0.005 (2)0.002 (2)0.024 (2)
C210.113 (4)0.111 (4)0.077 (3)0.010 (3)0.008 (3)0.005 (3)
C220.076 (3)0.106 (4)0.187 (6)0.011 (3)0.017 (3)0.054 (4)
C190.187 (6)0.080 (3)0.118 (4)0.036 (4)0.079 (4)0.011 (3)
Cl10.0833 (8)0.1147 (10)0.1327 (10)0.0095 (7)0.0513 (7)0.0343 (8)
Cl20.0963 (8)0.1068 (9)0.1116 (9)0.0110 (7)0.0393 (7)0.0080 (7)
Cl30.0935 (7)0.0751 (6)0.0486 (5)0.0089 (5)0.0093 (5)0.0011 (4)
Cl40.0905 (7)0.1071 (8)0.0540 (5)0.0341 (6)0.0134 (5)0.0160 (5)
Cu10.0377 (2)0.0421 (2)0.0538 (2)0.00205 (16)0.00665 (17)0.00594 (17)
O10.092 (2)0.095 (2)0.115 (2)0.0046 (18)0.0376 (19)0.0226 (19)
N10.068 (2)0.0602 (18)0.080 (2)0.0217 (16)0.0127 (17)0.0166 (16)
S10.0422 (5)0.0579 (5)0.0659 (5)0.0026 (4)0.0123 (4)0.0120 (4)
S20.0565 (6)0.0795 (7)0.0627 (5)0.0151 (5)0.0021 (4)0.0062 (5)
S30.0528 (5)0.0506 (4)0.0449 (4)0.0043 (4)0.0097 (4)0.0058 (4)
S40.0493 (5)0.0640 (5)0.0460 (4)0.0095 (4)0.0012 (4)0.0089 (4)
Geometric parameters (Å, º) top
C1—C21.394 (5)C15—H15A0.97
C1—C61.397 (5)C15—H15B0.97
C1—S11.753 (4)C16—O11.420 (6)
C2—C31.384 (6)C16—H16A0.97
C2—Cl11.736 (4)C16—H16B0.97
C3—C41.373 (7)C18—C171.514 (6)
C3—H30.93C18—H18A0.96
C4—C51.360 (6)C18—H18B0.96
C4—H40.93C18—H18C0.96
C5—C61.404 (5)C17—C191.503 (6)
C5—Cl21.729 (5)C17—N11.512 (5)
C6—S21.743 (3)C17—H170.98
C7—C81.387 (4)C20—C221.509 (5)
C7—C121.396 (4)C20—C211.509 (6)
C7—S31.752 (3)C20—N11.518 (5)
C8—C91.369 (4)C20—H200.98
C8—Cl31.738 (3)C21—H21A0.96
C9—C101.372 (5)C21—H21B0.96
C9—H90.93C21—H21C0.96
C10—C111.377 (4)C22—H22A0.96
C10—H100.93C22—H22B0.96
C11—C121.392 (4)C22—H22C0.96
C11—Cl41.736 (3)C19—H19A0.96
C12—S41.749 (3)C19—H19B0.96
C13—O11.406 (5)C19—H19C0.96
C13—C141.459 (7)Cu1—S42.1722 (9)
C13—H13A0.97Cu1—S22.1736 (10)
C13—H13B0.97Cu1—S32.1763 (9)
C14—C151.450 (7)Cu1—S12.1776 (9)
C14—H14A0.97N1—H1A0.89
C14—H14B0.97N1—H1B0.89
C15—C161.391 (7)
C2—C1—C6118.9 (3)C15—C16—H16B109.7
C2—C1—S1121.4 (3)O1—C16—H16B109.7
C6—C1—S1119.6 (2)H16A—C16—H16B108.2
C3—C2—C1121.0 (4)C17—C18—H18A109.5
C3—C2—Cl1120.1 (3)C17—C18—H18B109.5
C1—C2—Cl1118.9 (3)H18A—C18—H18B109.5
C2—C3—C4119.6 (4)C17—C18—H18C109.5
C2—C3—H3120.2H18A—C18—H18C109.5
C4—C3—H3120.2H18B—C18—H18C109.5
C5—C4—C3120.5 (4)C19—C17—N1111.4 (3)
C5—C4—H4119.8C19—C17—C18113.3 (5)
C3—C4—H4119.8N1—C17—C18108.1 (3)
C4—C5—C6121.2 (4)C19—C17—H17108.0
C4—C5—Cl2120.0 (4)N1—C17—H17108.0
C6—C5—Cl2118.9 (3)C18—C17—H17108.0
C5—C6—C1118.8 (3)C22—C20—C21113.2 (4)
C5—C6—S2121.3 (3)C22—C20—N1110.1 (3)
C1—C6—S2119.9 (3)C21—C20—N1108.0 (3)
C8—C7—C12119.0 (3)C22—C20—H20108.5
C8—C7—S3121.5 (2)C21—C20—H20108.5
C12—C7—S3119.5 (2)N1—C20—H20108.5
C9—C8—C7121.9 (3)C20—C21—H21A109.5
C9—C8—Cl3118.8 (3)C20—C21—H21B109.5
C7—C8—Cl3119.3 (2)H21A—C21—H21B109.5
C8—C9—C10119.5 (3)C20—C21—H21C109.5
C8—C9—H9120.2H21A—C21—H21C109.5
C10—C9—H9120.2H21B—C21—H21C109.5
C9—C10—C11119.6 (3)C20—C22—H22A109.5
C9—C10—H10120.2C20—C22—H22B109.5
C11—C10—H10120.2H22A—C22—H22B109.5
C10—C11—C12121.7 (3)C20—C22—H22C109.5
C10—C11—Cl4118.9 (2)H22A—C22—H22C109.5
C12—C11—Cl4119.4 (2)H22B—C22—H22C109.5
C11—C12—C7118.3 (3)C17—C19—H19A109.5
C11—C12—S4121.7 (2)C17—C19—H19B109.5
C7—C12—S4120.0 (2)H19A—C19—H19B109.5
O1—C13—C14106.3 (4)C17—C19—H19C109.5
O1—C13—H13A110.5H19A—C19—H19C109.5
C14—C13—H13A110.5H19B—C19—H19C109.5
O1—C13—H13B110.5S4—Cu1—S287.85 (3)
C14—C13—H13B110.5S4—Cu1—S392.26 (3)
H13A—C13—H13B108.7S2—Cu1—S3173.53 (4)
C13—C14—C15107.1 (5)S4—Cu1—S1173.81 (4)
C13—C14—H14A110.3S2—Cu1—S192.14 (4)
C15—C14—H14A110.3S3—Cu1—S188.45 (3)
C13—C14—H14B110.3C13—O1—C16108.5 (4)
C15—C14—H14B110.3C17—N1—C20120.0 (3)
H14A—C14—H14B108.5C17—N1—H1A107.3
C16—C15—C14107.0 (5)C20—N1—H1A107.3
C16—C15—H15A110.3C17—N1—H1B107.3
C14—C15—H15A110.3C20—N1—H1B107.3
C16—C15—H15B110.3H1A—N1—H1B106.9
C14—C15—H15B110.3C1—S1—Cu1103.90 (12)
H15A—C15—H15B108.6C6—S2—Cu1104.27 (13)
C15—C16—O1109.7 (4)C7—S3—Cu1104.12 (10)
C15—C16—H16A109.7C12—S4—Cu1104.08 (10)
O1—C16—H16A109.7
C6—C1—C2—C32.0 (5)C10—C11—C12—C70.3 (5)
S1—C1—C2—C3176.4 (3)Cl4—C11—C12—C7179.9 (2)
C6—C1—C2—Cl1176.3 (3)C10—C11—C12—S4179.5 (3)
S1—C1—C2—Cl15.3 (4)Cl4—C11—C12—S40.7 (4)
C1—C2—C3—C40.7 (7)C8—C7—C12—C110.6 (4)
Cl1—C2—C3—C4177.6 (4)S3—C7—C12—C11178.5 (2)
C2—C3—C4—C50.4 (7)C8—C7—C12—S4179.9 (2)
C3—C4—C5—C60.2 (7)S3—C7—C12—S40.8 (3)
C3—C4—C5—Cl2180.0 (4)O1—C13—C14—C1511.8 (7)
C4—C5—C6—C11.2 (5)C13—C14—C15—C167.2 (9)
Cl2—C5—C6—C1178.6 (3)C14—C15—C16—O10.1 (8)
C4—C5—C6—S2178.8 (3)C14—C13—O1—C1611.9 (6)
Cl2—C5—C6—S21.3 (4)C15—C16—O1—C137.7 (7)
C2—C1—C6—C52.2 (5)C19—C17—N1—C2052.1 (5)
S1—C1—C6—C5176.2 (2)C18—C17—N1—C20177.2 (3)
C2—C1—C6—S2177.8 (2)C22—C20—N1—C1756.5 (5)
S1—C1—C6—S23.8 (4)C21—C20—N1—C17179.5 (3)
C12—C7—C8—C90.4 (5)C2—C1—S1—Cu1177.0 (2)
S3—C7—C8—C9178.7 (2)C6—C1—S1—Cu14.6 (3)
C12—C7—C8—Cl3179.3 (2)C5—C6—S2—Cu1179.1 (3)
S3—C7—C8—Cl30.2 (4)C1—C6—S2—Cu10.8 (3)
C7—C8—C9—C100.1 (5)C8—C7—S3—Cu1179.6 (2)
Cl3—C8—C9—C10178.8 (3)C12—C7—S3—Cu10.5 (2)
C8—C9—C10—C110.5 (5)C11—C12—S4—Cu1178.7 (2)
C9—C10—C11—C120.3 (5)C7—C12—S4—Cu10.6 (3)
C9—C10—C11—Cl4179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S10.892.593.417 (3)156
N1—H1B···O1i0.891.932.805 (4)170
Symmetry code: (i) x, y+1, z.
 

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHerich, P., Fronc, M. & Kožíšek, J. (2015). Acta Cryst. C71, 159–164.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds