organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Ammonio-5-meth­­oxy-2-methyl­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aWestChem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 November 2016; accepted 7 November 2016; online 8 November 2016)

The title compound, C8H11NO4S, crystallizes as a zwitterion, with the negatively charged benzene­sulfonate group and the positively charged NH3+ group in mutually para positions. All the non-H atoms, except for one O atom of the sulfonate group, lie on a crystallographic mirror plane (Z′ = 1/2). In the crystal, the hydrogen-bonding structure is two-dimensional, propagating in the c-axis direction through a bifurcated hydrogen bond between the NH3+ and the SO3 groups, and in the b-axis direction through an R22(16) ring motif involving the same functional groups. This latter hydrogen bonding is supported by offset ππ inter­actions [inter­centroid distance = 3.8114 (4) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Amino-benzene­sulfonic acids are used extensively in the preparation of azo dyes and pigments (Christie, 2015[Christie, R. (2015). In Colour Chemistry, 2nd ed. Cambridge: Royal Society of Chemistry.]). Their crystal structures tend to be zwitterionic with a negatively charged sulfonate and protonation of the amine to give NH3+ (Smith et al., 2006[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o948-o950.]; Butcher & Deschamps, 2006[Butcher, R. J. & Deschamps, J. (2006). Acta Cryst. E62, o3768-o3770.]; Śledź et al., 2010[Śledź, P., Kamiński, R., Chruszcz, M., Zimmerman, M. D., Minor, W. & Woźniak, K. (2010). Acta Cryst. B66, 482-492.]).

The title compound, crystallizes as a zwitterion, as shown in Fig. 1[link]. The body of the mol­ecule lies on the crystallographic mirror plane (Z′ = ½) with only atom O3 of the sulfonate group and H atoms of the methyl and NH3+ groups out of plane. Close examination of the displacement ellipsoids of the meth­oxy group indicate that these are a little larger than those for the other atoms – thus there may be minor (unmodelled) out of plane disorder present.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level [symmetry code: (v) x, −y + [{1\over 2}], z].

In the crystal, hydrogen bonding involves the NH3+ group as an H-donor and the O atoms of the SO3 group as the acceptors (Table 1[link]). This gives a two-dimensional hydrogen-bonding network (Fig. 2[link]), with bifurcated bonds from H atom H2N to O3ii and O3iii (see Table 1[link]), forming sheets parallel to the ab plane, and the remaining donor and acceptor atoms forming an R22(16) ring motif that supports offset ππ stacking parallel to the b-axis direction (Table 1[link] and Fig. 3[link]); inter­centroid distances CgCga,b,c = 3.8114 (4) Å, Cg is the centroid of the benzene ring C1–C6, inter­planar distances = 3.4705 Å, slippages = 1.575 Å, symmetry codes: (a) −x + 1, −y, −z + 1, (b) −x + 1, y − [{1\over 2}], −z + 1, (c) −x + 1, y + [{1\over 2}], −z + 1.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.89 (2) 1.83 (2) 2.7100 (13) 171.9 (16)
N1—H2N⋯O3ii 0.89 (3) 2.35 (3) 3.0909 (18) 141 (1)
N1—H2N⋯O3iii 0.89 (3) 2.35 (3) 3.0909 (18) 141 (1)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1; (iii) [x, -y+{\script{1\over 2}}, z-1].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are drawn as dashed lines (see Table 1[link]) and only the ammonium H atoms have been included.
[Figure 3]
Figure 3
The R22(16) ring motif, with hydrogen bonds drawn as dashed lines (see Table 1[link]), that supports ππ stacking parallel to the b-axis direction.

Synthesis and crystallization

The crystallization of 4-aza­niumyl-5-meth­oxy-2-methyl­benzene-1-sulfonate occurred during an attempt to synthesize a salt form of rac-methyl­ephedrine by reaction with 4-amino-5-meth­oxy-2-methyl­benzene­sulfonic acid (Kennedy et al., 2011[Kennedy, A. R., Morrison, C. A., Briggs, N. E. B. & Arbuckle, W. (2011). Cryst. Growth Des. 11, 1821-1834.]). Synthesis was by adding 1.10 mmol of the acid to 1.00 mmol of the base, both previously partially dissolved in approximately 5 ml of deionized water. The resulting solution was stirred for 30 min at 323 K, filtered into a test tube and left to slowly evaporate. The title compound crystallized as colourless plates on the walls of the test tube.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula NH4+·C8H7O4S
Mr 217.24
Crystal system, space group Monoclinic, P21/m
Temperature (K) 123
a, b, c (Å) 8.0644 (3), 6.9410 (2), 8.6192 (3)
β (°) 105.039 (4)
V3) 465.94 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.34 × 0.19 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur E
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.960, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4897, 1187, 1101
Rint 0.017
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.10
No. of reflections 1187
No. of parameters 103
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.46
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

4-Azaniumyl-5-methoxy-2-methylbenzenesulfonate top
Crystal data top
NH4+·C8H7O4SF(000) = 228
Mr = 217.24Dx = 1.548 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 8.0644 (3) ÅCell parameters from 3052 reflections
b = 6.9410 (2) Åθ = 3.8–28.4°
c = 8.6192 (3) ŵ = 0.34 mm1
β = 105.039 (4)°T = 123 K
V = 465.94 (3) Å3Plate, colourless
Z = 20.34 × 0.19 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
1101 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.017
ω scansθmax = 28.9°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1010
Tmin = 0.960, Tmax = 1.000k = 98
4897 measured reflectionsl = 1111
1187 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.2128P]
where P = (Fo2 + 2Fc2)/3
1187 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3390 (2)0.25000.5975 (2)0.0141 (3)
C20.2229 (2)0.25000.4465 (2)0.0153 (4)
H20.10290.25000.43700.018*
C30.2838 (2)0.25000.3100 (2)0.0145 (3)
C40.4604 (2)0.25000.3286 (2)0.0136 (3)
C50.5753 (2)0.25000.4784 (2)0.0143 (3)
H50.69510.25000.48680.017*
C60.5174 (2)0.25000.6183 (2)0.0139 (3)
C80.6490 (2)0.25000.7788 (2)0.0179 (4)
N10.5211 (2)0.25000.18268 (18)0.0160 (3)
O10.18687 (16)0.25000.15613 (15)0.0203 (3)
O20.06437 (18)0.25000.70299 (17)0.0283 (4)
O30.31405 (13)0.07835 (14)0.85950 (11)0.0242 (3)
S10.24756 (5)0.25000.76544 (5)0.01480 (15)
C70.0052 (3)0.25000.1290 (3)0.0410 (7)
H1N0.583 (2)0.146 (2)0.1771 (19)0.023 (4)*
H2N0.430 (4)0.25000.097 (3)0.037 (7)*
H8B0.642 (2)0.140 (3)0.844 (2)0.033 (5)*
H7B0.033 (3)0.136 (3)0.178 (3)0.053 (6)*
H7A0.036 (4)0.25000.022 (4)0.056 (9)*
H8A0.762 (4)0.25000.763 (3)0.043 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (8)0.0160 (8)0.0127 (8)0.0000.0055 (6)0.000
C20.0126 (8)0.0195 (9)0.0142 (8)0.0000.0041 (6)0.000
C30.0145 (8)0.0164 (8)0.0116 (8)0.0000.0017 (6)0.000
C40.0163 (8)0.0146 (8)0.0116 (8)0.0000.0066 (6)0.000
C50.0118 (8)0.0163 (8)0.0149 (8)0.0000.0038 (6)0.000
C60.0140 (8)0.0153 (8)0.0123 (8)0.0000.0033 (6)0.000
C80.0142 (9)0.0258 (10)0.0127 (8)0.0000.0018 (6)0.000
N10.0156 (8)0.0219 (8)0.0117 (7)0.0000.0059 (6)0.000
O10.0149 (7)0.0344 (8)0.0105 (6)0.0000.0010 (5)0.000
O20.0150 (7)0.0522 (10)0.0195 (7)0.0000.0077 (5)0.000
O30.0332 (6)0.0241 (5)0.0201 (5)0.0068 (4)0.0156 (4)0.0057 (4)
S10.0150 (2)0.0192 (2)0.0118 (2)0.0000.00628 (16)0.000
C70.0151 (10)0.088 (2)0.0167 (10)0.0000.0021 (8)0.000
Geometric parameters (Å, º) top
C1—C21.392 (2)C6—C81.510 (2)
C1—C61.403 (2)C8—H8B0.960 (18)
C1—S11.7869 (17)C8—H8A0.96 (3)
C2—C31.388 (2)N1—H1N0.886 (18)
C2—H20.9500N1—H2N0.89 (3)
C3—O11.354 (2)O1—C71.422 (3)
C3—C41.391 (2)O2—S11.4351 (14)
C4—C51.380 (2)O3—S11.4625 (10)
C4—N11.464 (2)S1—O3i1.4624 (10)
C5—C61.401 (2)C7—H7B0.99 (2)
C5—H50.9500C7—H7A0.90 (4)
C2—C1—C6122.56 (15)C1—C6—C8124.83 (15)
C2—C1—S1116.02 (13)C6—C8—H8B113.8 (11)
C6—C1—S1121.42 (13)C6—C8—H8A109.9 (17)
C3—C2—C1119.50 (16)H8B—C8—H8A106.4 (14)
C3—C2—H2120.2C4—N1—H1N111.3 (11)
C1—C2—H2120.2C4—N1—H2N108.6 (18)
O1—C3—C2126.10 (16)H1N—N1—H2N108.0 (14)
O1—C3—C4115.26 (15)C3—O1—C7118.00 (15)
C2—C3—C4118.64 (16)O2—S1—O3i113.68 (5)
C5—C4—C3121.77 (15)O2—S1—O3113.68 (5)
C5—C4—N1120.73 (15)O3i—S1—O3109.11 (8)
C3—C4—N1117.49 (15)O2—S1—C1107.28 (8)
C4—C5—C6120.80 (16)O3i—S1—C1106.27 (5)
C4—C5—H5119.6O3—S1—C1106.27 (5)
C6—C5—H5119.6O1—C7—H7B110.8 (13)
C5—C6—C1116.72 (15)O1—C7—H7A105 (2)
C5—C6—C8118.44 (15)H7B—C7—H7A111.6 (17)
C6—C1—C2—C30.000 (1)C2—C1—C6—C50.000 (1)
S1—C1—C2—C3180.000 (1)S1—C1—C6—C5180.000 (1)
C1—C2—C3—O1180.000 (1)C2—C1—C6—C8180.000 (1)
C1—C2—C3—C40.000 (1)S1—C1—C6—C80.000 (1)
O1—C3—C4—C5180.000 (1)C2—C3—O1—C70.000 (1)
C2—C3—C4—C50.000 (1)C4—C3—O1—C7180.000 (1)
O1—C3—C4—N10.000 (1)C2—C1—S1—O20.000 (1)
C2—C3—C4—N1180.000 (1)C6—C1—S1—O2180.000 (1)
C3—C4—C5—C60.000 (1)C2—C1—S1—O3i121.93 (5)
N1—C4—C5—C6180.000 (1)C6—C1—S1—O3i58.07 (5)
C4—C5—C6—C10.000 (1)C2—C1—S1—O3121.93 (5)
C4—C5—C6—C8180.000 (1)C6—C1—S1—O358.07 (5)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3ii0.89 (2)1.83 (2)2.7100 (13)171.9 (16)
N1—H2N···O3iii0.89 (3)2.35 (3)3.0909 (18)141 (1)
N1—H2N···O3iv0.89 (3)2.35 (3)3.0909 (18)141 (1)
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x, y+1/2, z1.
 

Acknowledgements

The financial support of a PhD studentship by CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) and the support of GSK is gratefully acknowledged.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationButcher, R. J. & Deschamps, J. (2006). Acta Cryst. E62, o3768–o3770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChristie, R. (2015). In Colour Chemistry, 2nd ed. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKennedy, A. R., Morrison, C. A., Briggs, N. E. B. & Arbuckle, W. (2011). Cryst. Growth Des. 11, 1821–1834.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŚledź, P., Kamiński, R., Chruszcz, M., Zimmerman, M. D., Minor, W. & Woźniak, K. (2010). Acta Cryst. B66, 482–492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o948–o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds