organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(4-Chloro-2-nitro­phen­yl)-5-[4-(prop­yl­oxy)phen­yl]-1,3,4-oxa­diazole

CROSSMARK_Color_square_no_text.svg

aUniversity of Mainz, Institut for Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 November 2016; accepted 7 November 2016; online 10 November 2016)

The title compound, C17H14ClN3O4, was prepared by the Huisgen reaction of 4-chloro-2-nitro­benzoyl chloride and 5-(4-propyl­oxyphen­yl)tetra­zole. The diphenyl-1,3,4-oxa­diazole unit is nearly planar. The oxa­diazole ring is inclined to the 4-chloro-2-nitro­phenyl ring by 7.77 (8)°, and by 7.93 (8)° to the 4-propyl­oxyphenyl ring. The benzene rings are inclined to one another by 1.32 (7)°. The nitro group is twisted out of the plane of the benzene ring to which it is attached by 73.59 (16)°. The prop­oxy chain mean plane is inclined to the benzene ring to which it is attached by 4.46 (13)°. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds connect the mol­ecules, forming ribbons propagating along the b-axis direction. The ribbons are linked by C—H⋯π inter­actions, forming slabs parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Donor–acceptor substituted π-systems are solvatochromic (Detert et al. 2002[Detert, H., Sugiono, E. & Kruse, G. (2002). J. Phys. Org. Chem. 15, 638-641.]; Rettig 1986[Rettig, W. (1986). Angew. Chem. Int. Ed. Engl. 25, 971-988.]), making these materials inter­esting for sensing and non-linear optical applications (Schmitt et al. 2008[Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sen Lett, 6, 524-530.]; Schönhaber et al. 2010[Schönhaber, J., Frank, W. & Müller, T. J. J. (2010). Org. Lett. 12, 4122-4125.]; Franco et al. 2010[Franco, A., Brusatin, G., Guglielmi, M., Stracci, G., De Matteis, F., Casalboni, M., Detert, H., Grimm, B. & Schrader, S. (2010). J. Non-Cryst. Solids, 356, 1689-1695.]). o-Nitro­biaryl compounds are starting materials for the Cadogan cyclization (Cadogan 1962[Cadogan, J. I. G. (1962). Q. Rev. Chem. Soc. 16, 208-239.]; Letessier et al. 2013[Letessier, J., Geffe, M., Schollmeyer, D. & Detert, H. (2013). Synthesis, 45, 3173-3178.]).

Apart from the nitro group, te title compound, Fig. 1[link], is nearly planar. The oxa­diazole ring (O8/N10/N11/C7/C9) is inclined to the benzene ring (C1–C6) by 7.77 (8)° and by 7.93 (8)° to benzene ring (C12–C17). The benzene rings are inclined to one another by 1.32 (7)°. The nitro group is twisted out of the plane of the benzene ring (C1–C6), to which it is attached, by 73.59 (16)%. The prop­oxy chain mean plane (O18/C19–C21) is inclined to the benzene ring (C12–C17), to which it is attached, by 4.46 (13)°. The torsion angles along the biaryl axes are −7.5 (2)° (C6—C1—C7—N11) and 7.7 (2)° (N10—C9—C12—C17). The bonds connecting the central 1,3,4-oxa­diazole ring with the donor- and acceptor-substituted benzene rings, 1.4555 (17) and 1.4527 (17) Å, respectively, are very similar. The C4—Cl1 bond length of 1.7270 (14) Å is nearly identical to the bond lengths [1.727, 1.728 Å] found in 1-chloro-3,4-di­nitro­benzene (Wilkins & Small, 1985[Wilkins, A. & Small, R. W. H. (1985). Acta Cryst. C41, 1509-1512.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal, mol­ecules are connected via C—H⋯O and C—H⋯N hydrogen bonds, involving the aromatic rings to the the nitro and oxa­diazole groups, respectively, forming ribbons that propagate along the b-axis direction (Table 1[link] and Fig. 2[link]). The ribbons are linked by C—H⋯π inter­actions, forming slabs parallel to the ab plane (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of ring C12–C17.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O24i 0.95 2.57 3.4821 (18) 161
C14—H14⋯N10i 0.95 2.41 3.3351 (19) 163
C20—H20BCgii 0.99 2.86 3.7524 (17) 151
C21—H21BCgiii 0.99 2.84 3.6473 (17) 140
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z; (iii) -x, -y, -z.
[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and H atoms not involved in these inter­actions have been excluded.
[Figure 3]
Figure 3
A partial view along the b axis of the crystal packing of the title compound. The C—H⋯π inter­actions are illustrated as dashed lines (see Table 1[link]), and H atoms not involved in the inter­molecular inter­actions have been excluded.

Synthesis and crystallization

4-Chloro-2-nitro­benzoic acid (640 mg, 3.18 mmol) was refluxed for 12 h in thionyl chloride (6 ml, 82.7 mmol), excess thionyl chloride was distilled off in vacuo and the crude benzoyl chloride was dissolved in toluene (15 ml), then 5-(4-propyl­oxyphen­yl)tetra­zole (466 mg, 2.28 mmol) and 2,4,6-collidine (0.6 ml, 4.53 mmol) were added. After refluxing for 72 h, the mixture was cooled and 2N HCl(aq) (25 ml) was added. The aqueous phase was extracted with chloro­form (3 × 20 ml). The combined organic phase was dried with MgSO4 followed by evaporation and column chromatography (silica gel, toluene: ethyl acetate = 40:1) to afforded 723 mg of the title compound (yield 88%). 1H NMR (CDCl3) δ 8.07 (d, J = 8.4 Hz, 1H), 7.98–7.95 (m, 3H), 7.75 (dd, J = 8.4, 2.1 Hz, 1H), 7.02 – 6.99 (m, 2H), 4.00 (t, J = 6.5 Hz, 2H), 1.89–1.80 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H). 13C NMR (CDCl3) δ 166.1, 162.6, 160.0, 138.6, 133.2, 132.5, 129.1, 125.0, 117.1, 115.4, 115.3, 8.16, 69.9, 22.6, 10.6. The title compound was crystallized from a di­chloro­methane solution giving colourless plate-like crystals (m.p. 419–411 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H14ClN3O4
Mr 359.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 7.5691 (5), 7.7907 (5), 14.904 (1)
α, β, γ (°) 101.911 (5), 91.311 (5), 107.224 (5)
V3) 818.06 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.44 × 0.28 × 0.08
 
Data collection
Diffractometer STOE IPDS 2T
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 7659, 3942, 3221
Rint 0.018
(sin θ/λ)max−1) 0.662
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.04
No. of reflections 3942
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.38
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 1996[Stoe & Cie (1996). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 1996); cell refinement: X-AREA (Stoe & Cie, 1996); data reduction: X-RED32 (Stoe & Cie, 1996); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

2-(4-Chloro-2-nitrophenyl)-5-[4-(propyloxy)phenyl]-1,3,4-oxadiazole top
Crystal data top
C17H14ClN3O4Z = 2
Mr = 359.76F(000) = 372
Triclinic, P1Dx = 1.461 Mg m3
a = 7.5691 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7907 (5) ÅCell parameters from 8906 reflections
c = 14.904 (1) Åθ = 2.8–28.2°
α = 101.911 (5)°µ = 0.26 mm1
β = 91.311 (5)°T = 193 K
γ = 107.224 (5)°Plate, colourless
V = 818.06 (10) Å30.44 × 0.28 × 0.08 mm
Data collection top
STOE IPDS 2T
diffractometer
Rint = 0.018
Detector resolution: 6.67 pixels mm-1θmax = 28.1°, θmin = 2.8°
rotation method scansh = 810
7659 measured reflectionsk = 1010
3942 independent reflectionsl = 1919
3221 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.2041P]
where P = (Fo2 + 2Fc2)/3
3942 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.99714 (6)1.19481 (5)0.78094 (3)0.04350 (12)
C10.74265 (17)0.98285 (17)0.48656 (9)0.0236 (2)
C20.76872 (19)0.86300 (17)0.53984 (9)0.0266 (3)
H20.73140.73430.51370.032*
C30.84763 (19)0.92731 (19)0.62969 (9)0.0290 (3)
H30.86580.84380.66460.035*
C40.90006 (19)1.11479 (19)0.66840 (9)0.0284 (3)
C50.87652 (19)1.23889 (18)0.61822 (9)0.0293 (3)
H50.91241.36730.64490.035*
C60.79957 (18)1.17076 (17)0.52846 (9)0.0251 (3)
C70.65423 (18)0.91012 (17)0.39304 (9)0.0244 (3)
O80.61819 (13)0.72641 (12)0.35657 (6)0.0254 (2)
C90.53202 (18)0.70529 (17)0.27188 (9)0.0247 (3)
N100.51751 (18)0.85882 (16)0.25766 (8)0.0330 (3)
N110.59744 (18)0.99363 (16)0.33768 (8)0.0328 (3)
C120.46798 (18)0.52310 (17)0.21119 (9)0.0249 (3)
C130.47390 (18)0.36665 (18)0.24229 (9)0.0261 (3)
H130.52180.37910.30360.031*
C140.41008 (19)0.19464 (18)0.18386 (9)0.0272 (3)
H140.41290.08870.20530.033*
C150.34137 (19)0.17554 (18)0.09339 (9)0.0264 (3)
C160.33658 (19)0.33078 (18)0.06153 (9)0.0281 (3)
H160.29170.31850.00030.034*
C170.39800 (19)0.50300 (18)0.12099 (9)0.0284 (3)
H170.39230.60860.10000.034*
O180.28345 (15)0.00031 (13)0.04241 (7)0.0329 (2)
C190.2206 (2)0.03094 (19)0.05283 (9)0.0302 (3)
H19A0.32270.03040.08680.036*
H19B0.11630.01930.05900.036*
C200.1582 (2)0.23635 (19)0.09084 (10)0.0306 (3)
H20A0.06050.29660.05440.037*
H20B0.26430.28450.08550.037*
C210.0825 (2)0.2826 (2)0.19156 (10)0.0399 (4)
H21A0.17590.21530.22670.060*
H21B0.03040.24660.19610.060*
H21C0.05340.41540.21660.060*
N220.78583 (16)1.30994 (15)0.47701 (8)0.0285 (2)
O230.89671 (16)1.34446 (14)0.42036 (7)0.0382 (3)
O240.66822 (17)1.38593 (16)0.49721 (9)0.0472 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0577 (3)0.0393 (2)0.02601 (18)0.00562 (17)0.01008 (15)0.00578 (14)
C10.0236 (6)0.0223 (6)0.0239 (6)0.0054 (5)0.0023 (5)0.0054 (5)
C20.0300 (6)0.0216 (6)0.0277 (6)0.0069 (5)0.0025 (5)0.0059 (5)
C30.0327 (7)0.0289 (6)0.0271 (6)0.0090 (5)0.0029 (5)0.0110 (5)
C40.0314 (7)0.0295 (7)0.0212 (6)0.0056 (5)0.0001 (5)0.0044 (5)
C50.0342 (7)0.0227 (6)0.0264 (6)0.0036 (5)0.0006 (5)0.0035 (5)
C60.0267 (6)0.0220 (6)0.0259 (6)0.0052 (5)0.0026 (5)0.0075 (5)
C70.0256 (6)0.0196 (5)0.0264 (6)0.0052 (5)0.0022 (5)0.0044 (5)
O80.0323 (5)0.0207 (4)0.0219 (4)0.0071 (3)0.0015 (4)0.0037 (3)
C90.0257 (6)0.0259 (6)0.0216 (6)0.0065 (5)0.0009 (5)0.0059 (5)
N100.0424 (7)0.0242 (5)0.0299 (6)0.0090 (5)0.0093 (5)0.0036 (4)
N110.0410 (7)0.0243 (5)0.0306 (6)0.0086 (5)0.0076 (5)0.0037 (5)
C120.0261 (6)0.0241 (6)0.0231 (6)0.0060 (5)0.0007 (5)0.0051 (5)
C130.0303 (6)0.0272 (6)0.0206 (6)0.0086 (5)0.0024 (5)0.0055 (5)
C140.0327 (7)0.0251 (6)0.0247 (6)0.0096 (5)0.0004 (5)0.0069 (5)
C150.0281 (6)0.0264 (6)0.0228 (6)0.0073 (5)0.0009 (5)0.0034 (5)
C160.0324 (7)0.0309 (7)0.0196 (6)0.0073 (5)0.0020 (5)0.0068 (5)
C170.0331 (7)0.0266 (6)0.0256 (6)0.0070 (5)0.0003 (5)0.0097 (5)
O180.0459 (6)0.0260 (5)0.0229 (5)0.0082 (4)0.0053 (4)0.0018 (4)
C190.0355 (7)0.0306 (7)0.0218 (6)0.0083 (5)0.0010 (5)0.0028 (5)
C200.0320 (7)0.0288 (6)0.0268 (6)0.0065 (5)0.0024 (5)0.0018 (5)
C210.0479 (9)0.0358 (8)0.0290 (7)0.0100 (7)0.0071 (6)0.0029 (6)
N220.0340 (6)0.0206 (5)0.0279 (6)0.0041 (4)0.0025 (5)0.0056 (4)
O230.0511 (6)0.0310 (5)0.0313 (5)0.0067 (5)0.0074 (5)0.0125 (4)
O240.0483 (7)0.0397 (6)0.0648 (8)0.0234 (5)0.0108 (6)0.0214 (6)
Geometric parameters (Å, º) top
Cl1—C41.7270 (14)C13—H130.9500
C1—C21.3961 (18)C14—C151.3964 (18)
C1—C61.3984 (17)C14—H140.9500
C1—C71.4555 (17)C15—O181.3548 (16)
C2—C31.3822 (19)C15—C161.3970 (19)
C2—H20.9500C16—C171.3867 (18)
C3—C41.3864 (19)C16—H160.9500
C3—H30.9500C17—H170.9500
C4—C51.3857 (19)O18—C191.4346 (16)
C5—C61.3779 (18)C19—C201.5069 (18)
C5—H50.9500C19—H19A0.9900
C6—N221.4768 (16)C19—H19B0.9900
C7—N111.2883 (17)C20—C211.5253 (19)
C7—O81.3635 (14)C20—H20A0.9900
O8—C91.3633 (15)C20—H20B0.9900
C9—N101.2920 (17)C21—H21A0.9800
C9—C121.4527 (17)C21—H21B0.9800
N10—N111.4019 (16)C21—H21C0.9800
C12—C171.3941 (18)N22—O231.2173 (16)
C12—C131.4026 (17)N22—O241.2183 (17)
C13—C141.3796 (18)
C2—C1—C6116.88 (12)C13—C14—H14119.8
C2—C1—C7120.09 (11)C15—C14—H14119.8
C6—C1—C7123.00 (11)O18—C15—C14115.03 (12)
C3—C2—C1121.50 (12)O18—C15—C16124.85 (12)
C3—C2—H2119.2C14—C15—C16120.13 (12)
C1—C2—H2119.2C17—C16—C15119.33 (12)
C2—C3—C4119.40 (12)C17—C16—H16120.3
C2—C3—H3120.3C15—C16—H16120.3
C4—C3—H3120.3C16—C17—C12120.80 (12)
C5—C4—C3121.12 (12)C16—C17—H17119.6
C5—C4—Cl1119.52 (10)C12—C17—H17119.6
C3—C4—Cl1119.36 (11)C15—O18—C19118.75 (11)
C6—C5—C4118.10 (12)O18—C19—C20107.23 (11)
C6—C5—H5120.9O18—C19—H19A110.3
C4—C5—H5120.9C20—C19—H19A110.3
C5—C6—C1122.98 (12)O18—C19—H19B110.3
C5—C6—N22115.73 (11)C20—C19—H19B110.3
C1—C6—N22121.25 (11)H19A—C19—H19B108.5
N11—C7—O8112.64 (11)C19—C20—C21110.74 (12)
N11—C7—C1129.40 (12)C19—C20—H20A109.5
O8—C7—C1117.93 (11)C21—C20—H20A109.5
C9—O8—C7102.51 (10)C19—C20—H20B109.5
N10—C9—O8112.22 (11)C21—C20—H20B109.5
N10—C9—C12128.58 (12)H20A—C20—H20B108.1
O8—C9—C12119.19 (11)C20—C21—H21A109.5
C9—N10—N11106.49 (11)C20—C21—H21B109.5
C7—N11—N10106.13 (11)H21A—C21—H21B109.5
C17—C12—C13119.45 (12)C20—C21—H21C109.5
C17—C12—C9119.63 (12)H21A—C21—H21C109.5
C13—C12—C9120.92 (11)H21B—C21—H21C109.5
C14—C13—C12119.97 (12)O23—N22—O24125.20 (12)
C14—C13—H13120.0O23—N22—C6117.67 (11)
C12—C13—H13120.0O24—N22—C6117.08 (12)
C13—C14—C15120.31 (12)
C6—C1—C2—C30.19 (19)C1—C7—N11—N10178.06 (13)
C7—C1—C2—C3178.23 (13)C9—N10—N11—C70.37 (16)
C1—C2—C3—C40.8 (2)N10—C9—C12—C177.7 (2)
C2—C3—C4—C50.7 (2)O8—C9—C12—C17173.09 (12)
C2—C3—C4—Cl1179.54 (11)N10—C9—C12—C13171.67 (14)
C3—C4—C5—C60.1 (2)O8—C9—C12—C137.51 (19)
Cl1—C4—C5—C6179.66 (11)C17—C12—C13—C140.3 (2)
C4—C5—C6—C10.8 (2)C9—C12—C13—C14179.14 (12)
C4—C5—C6—N22177.27 (12)C12—C13—C14—C150.7 (2)
C2—C1—C6—C50.6 (2)C13—C14—C15—O18179.73 (12)
C7—C1—C6—C5177.33 (13)C13—C14—C15—C160.1 (2)
C2—C1—C6—N22177.30 (12)O18—C15—C16—C17179.22 (13)
C7—C1—C6—N224.7 (2)C14—C15—C16—C171.0 (2)
C2—C1—C7—N11170.45 (14)C15—C16—C17—C121.4 (2)
C6—C1—C7—N117.5 (2)C13—C12—C17—C160.8 (2)
C2—C1—C7—O87.31 (18)C9—C12—C17—C16179.77 (13)
C6—C1—C7—O8174.78 (11)C14—C15—O18—C19176.50 (12)
N11—C7—O8—C90.04 (15)C16—C15—O18—C193.3 (2)
C1—C7—O8—C9178.09 (11)C15—O18—C19—C20177.75 (12)
C7—O8—C9—N100.30 (15)O18—C19—C20—C21178.03 (12)
C7—O8—C9—C12179.01 (11)C5—C6—N22—O23104.46 (14)
O8—C9—N10—N110.42 (16)C1—C6—N22—O2373.63 (16)
C12—C9—N10—N11178.80 (13)C5—C6—N22—O2472.95 (16)
O8—C7—N11—N100.20 (16)C1—C6—N22—O24108.97 (15)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of ring C12–C17.
D—H···AD—HH···AD···AD—H···A
C2—H2···O24i0.952.573.4821 (18)161
C14—H14···N10i0.952.413.3351 (19)163
C20—H20B···Cgii0.992.863.7524 (17)151
C21—H21B···Cgiii0.992.843.6473 (17)140
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x, y, z.
 

References

First citationCadogan, J. I. G. (1962). Q. Rev. Chem. Soc. 16, 208–239.  CrossRef CAS Web of Science Google Scholar
First citationDetert, H., Sugiono, E. & Kruse, G. (2002). J. Phys. Org. Chem. 15, 638–641.  Web of Science CrossRef CAS Google Scholar
First citationFranco, A., Brusatin, G., Guglielmi, M., Stracci, G., De Matteis, F., Casalboni, M., Detert, H., Grimm, B. & Schrader, S. (2010). J. Non-Cryst. Solids, 356, 1689–1695.  Web of Science CrossRef CAS Google Scholar
First citationLetessier, J., Geffe, M., Schollmeyer, D. & Detert, H. (2013). Synthesis, 45, 3173–3178.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRettig, W. (1986). Angew. Chem. Int. Ed. Engl. 25, 971–988.  CrossRef Web of Science Google Scholar
First citationSchmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sen Lett, 6, 524–530.  Web of Science CrossRef CAS Google Scholar
First citationSchönhaber, J., Frank, W. & Müller, T. J. J. (2010). Org. Lett. 12, 4122–4125.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWilkins, A. & Small, R. W. H. (1985). Acta Cryst. C41, 1509–1512.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds