organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 1-(4-fluoro­benz­yl)-2-(4-meth­­oxy­phen­yl)-1H-benzo[d]imidazole-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bPG Department of Chemistry, SDM College (Autonomous), Ujire 574 240, India, cDepartment of Chemistry, Mangalore University, Mangaluru 574 199, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: muneer@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 October 2016; accepted 31 October 2016; online 4 November 2016)

The title benzoimidazole derivative, C24H21FN2O3, is T-shaped, with the meth­oxy­phenyl and fluoro­benzyl rings inclined to the benzoimidazole ring system by 40.91 (8) and 86.04 (8)°, respectively, indicating that the fluoro­benzyl ring system is nearly orthogonal to the benzoimidazole ring system. The fluoro­benzyl and meth­oxy­phenyl rings are inclined to one another by 78.90 (10)°. In the crystal, mol­ecules are linked via two pairs of C—H⋯O hydrogen bonds, forming inversion dimers with R22(28) and R22(22) ring motifs. As a result of these hydrogen bonds, ribbons propagating along [010] are formed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzoimidazole-based compounds possess diverse biological activities such as anti­cancer, anti­bacterial, anti­fungal (Venkatesan, 1998[Venkatesan, P. (1998). J. Antimic. Chemoth. 41, 145-147.]), anti­helmintic, anti-inflammatory, anti­histaminic and proton-pump inhibitor (Veerakumari & Munuswamy, 2000[Veerakumari, L. & Munuswamy, N. (2000). Vet. Parasitol. 91, 129-140.]). In our recent work (Madankumar et al., 2016[Madankumar, S., Vasantha, K., Boja, P., Byrappa, K. & Warad, I. (2016). IUCr Data 1, x161124.]), we have reported on the crystal structures of different benzoimidazoles with varying substitution at positions 1 and 2. Based upon these observations, it was found worth to synthesize some 1,2-disubstituted benzoimidazole-5-carboxyl­ates by using a `one-pot' nitro-reductive cyclization method and we report herein on the synthesis and crystal structure of the title compound.

The mol­ecular structure is shown in Fig. 1[link]. The mol­ecule is T-shaped with the meth­oxy­phenyl (C11–C16) and fluoro­benzyl (C19–C24) rings inclined to the benzoimidazole ring system (N1/N2/C1–C7) by 40.91 (8) and 86.04 (8)°, respectively, indicating that the fluoro­benzyl ring is almost orthogonal to the benzoimidazole ring system. The fluoro­benzyl and meth­oxy­phenyl rings are inclined to one another by 78.9 (1)°. The benzoimidazole ring is, as expected, almost planar, with the maximum deviation being 0.024 (2) Å for atom N1. The meth­oxy group lies in the plane of the benzene ring and is in a −synclinal conformation as indicated by the value of −17.0 (4)° for torsion angle C15—C14—O3—C17. The mean plane of the ethyl carboxyl­ate group (O1/O2/C8–C10) is inclined to the benzoimidazole ring by 4.53 (12)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked via two pairs of C—H⋯O hydrogen bonds, forming inversion dimers with [R_{2}^{2}](28) and [R_{2}^{2}](22) ring motifs. As a result of these hydrogen bonds, ribbons propagating along [010] are formed (Table 1[link] and Fig. 2[link]). There are no other significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯O1i 0.96 2.43 3.356 (4) 163
C20—H20⋯O1ii 0.93 2.45 3.324 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only H atoms H17C and H20 have been included.

Synthesis and crystallization

Sodium di­thio­nite (3.0 equiv) was added to a stirred solution of ethyl-4-(4-fluoro­benzyl­amino)-3-nitro­benzoate (0.01 mol) and 4-meth­oxy­benzaldehyde (0.01 mol) in DMSO (20 ml). The reaction mixture was stirred at 363 K for 3 h. After the completion of reaction [monitored by TLC hexa­ne: ethyl acetate (7: 3, v/v)], it was poured onto crushed ice. The solid that separated was filtered off, washed with water and dried. The product was recrystallized using DMF as the solvent to yield colourless block-like crystals (m.p. 343–345 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H21FN2O3
Mr 404.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 13.5156 (10), 9.5906 (8), 16.1315 (13)
β (°) 101.409 (3)
V3) 2049.7 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.77
Crystal size (mm) 0.29 × 0.27 × 0.24
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.808, 0.837
No. of measured, independent and observed [I > 2σ(I)] reflections 12703, 3318, 2930
Rint 0.053
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.182, 1.05
No. of reflections 3318
No. of parameters 274
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Ethyl 1-(4-fluorobenzyl)-2-(4-methoxyphenyl)-1H-benzo[d]imidazole-5-carboxylate top
Crystal data top
C24H21FN2O3F(000) = 848
Mr = 404.43Dx = 1.311 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 2930 reflections
a = 13.5156 (10) Åθ = 4.8–64.2°
b = 9.5906 (8) ŵ = 0.77 mm1
c = 16.1315 (13) ÅT = 296 K
β = 101.409 (3)°Block, colourless
V = 2049.7 (3) Å30.29 × 0.27 × 0.24 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
3318 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2930 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.053
Detector resolution: 18.4 pixels mm-1θmax = 64.2°, θmin = 4.8°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 910
Tmin = 0.808, Tmax = 0.837l = 1718
12703 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.1193P)2 + 0.3084P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3318 reflectionsΔρmax = 0.21 e Å3
274 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (17)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.07749 (10)0.11559 (17)0.77837 (11)0.0973 (6)
O10.26807 (12)0.0335 (2)0.51786 (10)0.0797 (6)
O20.31003 (11)0.14020 (17)0.64310 (10)0.0721 (6)
O30.94650 (14)0.72073 (18)0.50713 (14)0.0922 (7)
N10.58231 (12)0.29661 (16)0.53285 (10)0.0538 (5)
N20.68142 (11)0.25854 (15)0.66019 (9)0.0485 (5)
C10.53828 (13)0.19655 (19)0.57612 (11)0.0480 (6)
C20.44881 (14)0.1219 (2)0.55256 (12)0.0527 (6)
C30.42179 (14)0.0283 (2)0.60977 (12)0.0518 (6)
C40.48318 (14)0.0107 (2)0.69070 (12)0.0551 (6)
C50.57209 (14)0.0826 (2)0.71444 (12)0.0535 (6)
C60.59874 (13)0.17340 (18)0.65591 (11)0.0471 (5)
C70.66709 (13)0.33072 (18)0.58400 (11)0.0496 (6)
C80.32629 (15)0.0496 (2)0.58441 (13)0.0593 (7)
C90.2175 (2)0.2203 (3)0.62499 (19)0.0911 (10)
C100.2212 (3)0.3276 (4)0.6906 (3)0.1180 (16)
C110.73916 (14)0.43352 (18)0.56416 (11)0.0510 (6)
C120.84343 (15)0.4129 (2)0.58535 (12)0.0544 (6)
C130.90954 (16)0.5105 (2)0.56507 (13)0.0599 (7)
C140.87388 (18)0.6299 (2)0.52271 (15)0.0660 (8)
C150.77114 (18)0.6523 (2)0.49977 (16)0.0714 (8)
C160.70457 (16)0.5549 (2)0.52076 (14)0.0626 (7)
C170.9192 (3)0.8263 (4)0.4464 (3)0.1321 (18)
C180.76049 (14)0.2723 (2)0.73505 (11)0.0510 (6)
C190.84310 (13)0.16391 (18)0.74350 (10)0.0454 (5)
C200.84912 (14)0.06472 (19)0.68282 (12)0.0510 (6)
C210.92827 (15)0.0298 (2)0.69431 (14)0.0597 (7)
C221.00001 (15)0.0228 (2)0.76717 (15)0.0642 (7)
C230.99693 (16)0.0737 (3)0.82863 (14)0.0683 (8)
C240.91817 (15)0.1667 (2)0.81640 (12)0.0578 (6)
H20.407900.134600.499500.0630*
H40.463000.050900.728700.0660*
H50.612700.070700.767600.0640*
H9A0.210300.264000.569900.1100*
H9B0.160000.159500.624400.1100*
H10A0.272200.395000.685600.1770*
H10B0.156800.373100.683600.1770*
H10C0.236900.284700.745400.1770*
H120.868600.332000.613600.0650*
H130.978700.495200.580200.0720*
H150.746700.732600.470300.0860*
H160.635500.570900.505500.0750*
H17A0.883700.785800.394600.1980*
H17B0.978900.872300.436600.1980*
H17C0.876500.892700.466700.1980*
H18A0.730000.267300.784600.0610*
H18B0.790800.363900.734500.0610*
H200.799700.061200.633800.0610*
H210.932600.096600.653400.0720*
H231.046700.076400.877500.0820*
H240.914900.233200.857800.0690*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0674 (9)0.0911 (10)0.1323 (14)0.0300 (7)0.0171 (8)0.0145 (9)
O10.0667 (10)0.0970 (13)0.0703 (10)0.0099 (8)0.0012 (8)0.0012 (9)
O20.0679 (9)0.0779 (11)0.0722 (10)0.0165 (7)0.0182 (7)0.0008 (8)
O30.0903 (12)0.0650 (10)0.1366 (16)0.0022 (8)0.0599 (12)0.0180 (10)
N10.0593 (9)0.0516 (9)0.0509 (9)0.0078 (7)0.0119 (7)0.0079 (7)
N20.0508 (8)0.0460 (8)0.0488 (8)0.0047 (6)0.0099 (6)0.0033 (6)
C10.0512 (9)0.0450 (10)0.0482 (10)0.0096 (7)0.0107 (7)0.0028 (7)
C20.0518 (10)0.0554 (11)0.0500 (10)0.0109 (8)0.0080 (8)0.0000 (8)
C30.0510 (10)0.0504 (11)0.0549 (10)0.0083 (8)0.0125 (8)0.0029 (8)
C40.0581 (11)0.0520 (11)0.0575 (11)0.0054 (8)0.0173 (8)0.0065 (8)
C50.0552 (10)0.0539 (11)0.0502 (10)0.0062 (8)0.0077 (8)0.0056 (8)
C60.0504 (9)0.0420 (9)0.0494 (9)0.0094 (7)0.0111 (7)0.0025 (7)
C70.0552 (10)0.0449 (10)0.0498 (10)0.0103 (8)0.0133 (8)0.0030 (8)
C80.0572 (11)0.0607 (12)0.0620 (12)0.0036 (9)0.0168 (9)0.0074 (10)
C90.0832 (16)0.103 (2)0.0922 (18)0.0344 (15)0.0297 (13)0.0184 (16)
C100.095 (2)0.092 (2)0.180 (4)0.0134 (16)0.059 (2)0.023 (2)
C110.0621 (11)0.0441 (10)0.0493 (10)0.0055 (8)0.0168 (8)0.0009 (8)
C120.0632 (11)0.0503 (11)0.0527 (10)0.0091 (8)0.0190 (8)0.0049 (8)
C130.0608 (11)0.0603 (12)0.0631 (12)0.0049 (9)0.0235 (9)0.0010 (9)
C140.0791 (14)0.0505 (11)0.0784 (14)0.0011 (10)0.0397 (11)0.0018 (10)
C150.0807 (15)0.0510 (12)0.0899 (16)0.0130 (10)0.0346 (12)0.0197 (11)
C160.0649 (12)0.0540 (12)0.0722 (13)0.0103 (9)0.0213 (10)0.0085 (10)
C170.128 (3)0.092 (2)0.198 (4)0.0054 (19)0.085 (3)0.060 (2)
C180.0565 (10)0.0497 (10)0.0468 (10)0.0010 (8)0.0101 (8)0.0033 (8)
C190.0493 (9)0.0438 (9)0.0436 (9)0.0048 (7)0.0107 (7)0.0038 (7)
C200.0546 (10)0.0493 (10)0.0487 (10)0.0017 (8)0.0093 (8)0.0001 (8)
C210.0637 (12)0.0488 (11)0.0708 (13)0.0004 (9)0.0236 (10)0.0012 (9)
C220.0509 (11)0.0601 (12)0.0816 (14)0.0069 (9)0.0135 (10)0.0170 (11)
C230.0578 (11)0.0785 (15)0.0630 (13)0.0005 (10)0.0018 (9)0.0097 (11)
C240.0632 (11)0.0603 (12)0.0477 (10)0.0039 (9)0.0059 (8)0.0015 (9)
Geometric parameters (Å, º) top
F1—C221.359 (3)C19—C201.379 (2)
O1—C81.209 (3)C19—C241.393 (3)
O2—C81.335 (3)C20—C211.386 (3)
O2—C91.447 (3)C21—C221.369 (3)
O3—C141.372 (3)C22—C231.363 (3)
O3—C171.406 (5)C23—C241.373 (3)
N1—C11.388 (2)C2—H20.9300
N1—C71.314 (2)C4—H40.9300
N2—C61.375 (2)C5—H50.9300
N2—C71.390 (2)C9—H9A0.9700
N2—C181.452 (2)C9—H9B0.9700
C1—C21.392 (3)C10—H10A0.9600
C1—C61.399 (2)C10—H10B0.9600
C2—C31.387 (3)C10—H10C0.9600
C3—C41.412 (3)C12—H120.9300
C3—C81.477 (3)C13—H130.9300
C4—C51.373 (3)C15—H150.9300
C5—C61.384 (3)C16—H160.9300
C7—C111.465 (3)C17—H17A0.9600
C9—C101.470 (5)C17—H17B0.9600
C11—C121.397 (3)C17—H17C0.9600
C11—C161.391 (3)C18—H18A0.9700
C12—C131.377 (3)C18—H18B0.9700
C13—C141.371 (3)C20—H200.9300
C14—C151.381 (3)C21—H210.9300
C15—C161.385 (3)C23—H230.9300
C18—C191.512 (3)C24—H240.9300
C8—O2—C9117.34 (18)C19—C24—C23121.56 (18)
C14—O3—C17119.1 (2)C1—C2—H2121.00
C1—N1—C7105.29 (15)C3—C2—H2121.00
C6—N2—C7106.36 (14)C3—C4—H4119.00
C6—N2—C18123.58 (15)C5—C4—H4119.00
C7—N2—C18129.87 (15)C4—C5—H5121.00
N1—C1—C2130.85 (17)C6—C5—H5121.00
N1—C1—C6109.99 (16)O2—C9—H9A110.00
C2—C1—C6119.16 (17)O2—C9—H9B110.00
C1—C2—C3118.69 (17)C10—C9—H9A110.00
C2—C3—C4120.58 (18)C10—C9—H9B110.00
C2—C3—C8118.27 (17)H9A—C9—H9B108.00
C4—C3—C8121.14 (17)C9—C10—H10A109.00
C3—C4—C5121.33 (18)C9—C10—H10B109.00
C4—C5—C6117.23 (17)C9—C10—H10C109.00
N2—C6—C1105.84 (15)H10A—C10—H10B109.00
N2—C6—C5131.18 (17)H10A—C10—H10C110.00
C1—C6—C5122.97 (17)H10B—C10—H10C109.00
N1—C7—N2112.51 (15)C11—C12—H12119.00
N1—C7—C11124.42 (16)C13—C12—H12119.00
N2—C7—C11123.08 (16)C12—C13—H13120.00
O1—C8—O2122.92 (19)C14—C13—H13120.00
O1—C8—C3124.12 (19)C14—C15—H15120.00
O2—C8—C3112.97 (17)C16—C15—H15120.00
O2—C9—C10108.7 (3)C11—C16—H16119.00
C7—C11—C12122.24 (16)C15—C16—H16119.00
C7—C11—C16120.09 (17)O3—C17—H17A109.00
C12—C11—C16117.65 (18)O3—C17—H17B109.00
C11—C12—C13121.07 (18)O3—C17—H17C109.00
C12—C13—C14120.4 (2)H17A—C17—H17B110.00
O3—C14—C13115.3 (2)H17A—C17—H17C110.00
O3—C14—C15124.73 (19)H17B—C17—H17C109.00
C13—C14—C15119.9 (2)N2—C18—H18A109.00
C14—C15—C16119.8 (2)N2—C18—H18B109.00
C11—C16—C15121.2 (2)C19—C18—H18A109.00
N2—C18—C19114.93 (15)C19—C18—H18B109.00
C18—C19—C20123.82 (16)H18A—C18—H18B108.00
C18—C19—C24117.67 (15)C19—C20—H20120.00
C20—C19—C24118.50 (17)C21—C20—H20120.00
C19—C20—C21120.57 (18)C20—C21—H21121.00
C20—C21—C22118.64 (19)C22—C21—H21121.00
F1—C22—C21118.57 (19)C22—C23—H23121.00
F1—C22—C23118.8 (2)C24—C23—H23121.00
C21—C22—C23122.6 (2)C19—C24—H24119.00
C22—C23—C24118.1 (2)C23—C24—H24119.00
C9—O2—C8—O10.7 (3)C4—C3—C8—O1175.9 (2)
C9—O2—C8—C3179.00 (19)C4—C3—C8—O23.8 (3)
C8—O2—C9—C10171.5 (2)C3—C4—C5—C60.3 (3)
C17—O3—C14—C13163.7 (3)C4—C5—C6—N2179.81 (18)
C17—O3—C14—C1517.0 (4)C4—C5—C6—C11.7 (3)
C7—N1—C1—C2179.0 (2)N1—C7—C11—C12139.31 (19)
C7—N1—C1—C61.1 (2)N1—C7—C11—C1638.9 (3)
C1—N1—C7—N20.5 (2)N2—C7—C11—C1241.0 (3)
C1—N1—C7—C11179.72 (17)N2—C7—C11—C16140.85 (19)
C7—N2—C6—C10.87 (19)C7—C11—C12—C13179.22 (18)
C7—N2—C6—C5177.82 (19)C16—C11—C12—C131.0 (3)
C18—N2—C6—C1176.28 (16)C7—C11—C16—C15178.68 (19)
C18—N2—C6—C52.4 (3)C12—C11—C16—C150.4 (3)
C6—N2—C7—N10.2 (2)C11—C12—C13—C140.6 (3)
C6—N2—C7—C11179.54 (16)C12—C13—C14—O3178.9 (2)
C18—N2—C7—N1175.24 (17)C12—C13—C14—C150.4 (3)
C18—N2—C7—C114.5 (3)O3—C14—C15—C16178.3 (2)
C6—N2—C18—C1985.6 (2)C13—C14—C15—C160.9 (3)
C7—N2—C18—C19100.2 (2)C14—C15—C16—C110.5 (3)
N1—C1—C2—C3178.97 (19)N2—C18—C19—C204.7 (3)
C6—C1—C2—C31.0 (3)N2—C18—C19—C24176.44 (16)
N1—C1—C6—N21.2 (2)C18—C19—C20—C21178.77 (18)
N1—C1—C6—C5177.60 (17)C24—C19—C20—C210.1 (3)
C2—C1—C6—N2178.81 (16)C18—C19—C24—C23178.88 (19)
C2—C1—C6—C52.4 (3)C20—C19—C24—C230.0 (3)
C1—C2—C3—C40.9 (3)C19—C20—C21—C220.2 (3)
C1—C2—C3—C8179.53 (17)C20—C21—C22—F1179.9 (2)
C2—C3—C4—C51.6 (3)C20—C21—C22—C230.3 (3)
C8—C3—C4—C5179.83 (18)F1—C22—C23—C24179.98 (19)
C2—C3—C8—O12.7 (3)C21—C22—C23—C240.3 (3)
C2—C3—C8—O2177.62 (17)C22—C23—C24—C190.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O1i0.962.433.356 (4)163
C20—H20···O1ii0.932.453.324 (2)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMadankumar, S., Vasantha, K., Boja, P., Byrappa, K. & Warad, I. (2016). IUCr Data 1, x161124.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeerakumari, L. & Munuswamy, N. (2000). Vet. Parasitol. 91, 129–140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVenkatesan, P. (1998). J. Antimic. Chemoth. 41, 145–147.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds